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INTRODUCTION

“ Brahmagupta holds a vemarksble place in the history of Eastern civilisation.
It was he who taught the Arabs astronomy before they became acquainted with
Ptolemy; for the famous Sindhind of Arabian literature, frequently mentioned but
not yet brought to light, is a translation of his Brahmasiddhdnta; and the only
other book on Indian astronomy, called Alarkand, which they knew, was a transiation

of his Khandakhadyaka."
Dr. E. C. Sachsu, Alberani's India, Vol. II, p. 804.

In a paper ‘ Aryabhata the Tather of Indian Epicyclic Astro-
nomy,’’ * it has been established that the scientific Hindu Astronomy
was created by Aryabhata I (476 A.D.). He was the teacher of two
distinet systems of astronomy, one of which is called the audayika
system, and the other the drdhardirika system. In the first the
astronomical day is taken to begin at sunrise abt Lankd and in
the other the same begins at the midnight of the same place. In the
Khandakhddyake Brahmagupta gives compendious rules for the cal-
culation of longitudes, ete., of ‘planets,” according to the ardharajrika
system of Aryabhata I.f It was this system that was used by
Varahamihira when he gave the epicyclic cast to the Saryasiddhanta
in his Paficasiddhantikd. For this the reader is referred to the present
translator’s papers ‘‘Aryabhata’s Lost Work’’{ and ‘‘ Aryabhata the
Father of Indian Epicyclic Astronomy '’ already mentioned.

The question why Brahmagupta who was so bitter an opponent
of Aryabhata in his younger days (628 A.D.) climbed down to
describe and teach one of the systems of Aryabhata’s astronomy in
his sixty-seventh year (665 A.D.), cannot yet be properly answered.
So great was Aryabhata’s fame thab in spite of Brahmagupta’s severe
criticisms of the former in Chapter XI of his Brihma-sphuta-
siddhanta, it perhaps was undiminished and it was Aryabhata
who continued to be universally followed. Perhaps to meet this
popular demand Brahmagupta in the Khandakhadyka took upon
himself the task of simplifying Aryabhata’s ardhardtrike system and
from the present translation it will appear that in this work he was

* Journal of the Department of Letters, Calcutta University, Vol. XVIII.
+ Khandakhadyaka, Translation, T stanzas 1, 2 and 7.
* Bulletin, Calcutta Mathematical Society, Vol. XXTI, Nos. 2 and 3.
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eminently successful. But DBrahmagupta could mnot be a mers
pimplifier or expounder.
The work Khandakhdadyaka had two distinet parts, viz., the
Khandakhadyaka proper and the Uttara Khandakhadyaka. In the
first part the astronomical constants are the samo as those of
Aryabhata's drdhardtrika system, but the methods of spherical
astronomy, calculations of eclipses and other topics are almost the
" same as in the Brahmasphuta-siddhanta. The correction for parallax
in caleulating a solar eclipse is here an important illustration.* In
the Utiura Khandakhadyaka, Brahmagupta gives corrections to the
Khandakhadyaka proper. In it are to be found the neat and original
‘methods of interpolation and correction to the longitudes of the
aphelia, as also to the dimensions to the epicyocles of apsis of the sun
and the moon,t while a few additional chapters supply what else is
nécessary to the seven chapters of the first part, to make the whole
& complete treatise on Hindu scientific astronomy. Later on will
be detailed the additional matters treated of in this Ultara portion.
It was perhaps through the influence of this supplementary
“part of the Khandakhddyakae, that Brahmagupta’'s great work,
the Brahmasphuta-Siddhanta, came to be valued among a distinct
school of Indian astronomers ; even now this Siddhanta of Brahma-
gupta forms the basis for the calculation of almanacs by astronomers
of the orthodox school in Rajputana, Bombay and other places.

Was Aryabhata the author of two distinct systems of astronomy ?

This question has already been answered in the affirmative but -

i trust, though I have treated of this question in my papers already
mentioned, -it would perhaps be not out of place to restate in detail
the reasons for this hypbthesis. In his Brahmasphuta-siddhanta
Brahmagupta thus speaks of the two works of Aryabhata :—
guefanran gfafa o A8 anay @ e
{qudtcggamt ag=< ¥ &7 0
o Brahmasphutasiddhanta, XI, 5.
““Ag in both the works the number of the sun’s revolutions is
: spoken of as 4,820,000 years, their planatary cycle is clear, i.e., of
4,820,000 years. Why then is there a difference of 300 civil days
in the same cyecle of the two books? ”’

Agwin in stansu 13 b1 the sume chapter he suys,
=#fd: ndugfiadevd ggdafils: o
AR AR Ty afrwar: )
‘“In 14,400 years elapsed of the Mahayuga, there is produced a
difference of one day in the audayika and ardhardtrika systems.’’
Vardhamihira in his Paicasiddhantika, XV, 20, writes—

wETY UawnHY Rawale s Tisdz; |
94 € O3 qFIeAq WIS ST 0
Thibaut translates it thus :—

‘“ Aryabhata maintains that the beginning of the day is to be
reckoned from midnight at Lankd; and the same teacher again
says that the day begins from sunrise at Lanka.”’

Thus from the writings of Brahmagupta and Varahamihira, it
is clear that Aryabhata I was the author of both the audayika and
ardhardtrika systems of agtronomy. In Varahamihira’s stanza the
phrase ® wa (=he undoubfedly) is of speciaj significance. It removes
the least doubt as to Aryabhata’s author: hip of both these systems,
These audayika and ardhardtrika astronomical constants are respect-
ively to be found from the Aryabhatiya and may be deduced from
the Khandakhadyaka. The following is the comparative view of
the constants of the two systems along with those of the Sirya-
siddhdnta of Varahamihira and of the modern Saryyasiddhanta.

(1) Planetary Revolutions in a Mahayuga of 4,320,000 Years.

" Translation, Chapter V, Brahma-sphuta-siddhanta, XI, 33-26,
1 Translation, Chapter IX, °

s

According to According to Accerding to According to
Aryabha gya. K{mnda- Suryasiddhantg the Modern
khadyaka. of Varaha, Siuryasiddhanta.
Of Moon 57753336 57753336 67763336 57753336
» Sun 4320000 4320000 4320000 -+ 3320000
» Mars 2206824 2296824 2296824 2296832
» Jupiter 364224 364320 364220 364220
»» Saturn 146564 146564 146564 145568
» Moon’s 488219 48821
' Aon s 9 488219 488208
» Venus 7022388 7022388 _ 7022388 7022376
»» Mercury 17937020 17937000 17937000 17937060
» Moon’s 2322326 23222 :
Moon 226 ' 282226 232238




£)

Longitudes of the Apogees of the Orbils of Planels,

According to

According to

According to the

(5) Imnyiluc&zs of the Nodes of the Orbits of Planels.

Of Saturn
v Jupiter
+» Mars

w Venus

» Mercury

According to
Aryabhatiya.

60°
100°

According to

According to

According td the

Khanda- Suryasiddhanta Modern

khadyaka. of Vardha. Siuiryasiddhanta.

40° Not stated in | Have to be cal

the text. culated from the)

20° data of the text.
80°
60°
100°

(6) Orbital Inclinations (Geocentric) to the Ecliptic.

According to

According to

According to the

[ tronomical day.

f“";gi“.g to Khanda- | Sargasiddhanta Moders
ryabhatiye. khadyaka. of Vardha. | Saryasiddhinta.
Of 8un 78° 80° 80° 77°17
»  Mercury 210° 220° 220° etec., have to be
calculated from
» Venus 90° 80° 80° the data given
in the text.
»w Mara 118° 110° 110°
++ Jupiter 180° 160° 160°
»n Saturn 286° 240° 240°
(83) Dimensions of the Epicycles of Apsis.
. According to According to | According to the
éccozd}:ng_ to Khanda- Saryasiddhanta Modern
ryabhatiya. khadyaka, of Varibha, Saryasiddhanta.
Of Bun 13°80° 14° 14° 183° to 14°
++ Moon 81°80° g1° a1° 81%° to 82°
» Mercury 293° to 813%° 28° 28° 28° to 30°
» Venus _ 9° to 18° 14° 14° 11° to 12°
+» Mars 63° to 81° 70° 70° 72° to 75°
»» Jupiter 813° to 36%° 32° 32° 32° to 83°
» Saturn 403° to 58%° 60° 60° 48° to 49°
(4 Dimensions of the Sighra Epicycles (i.e., of Conjunctions).
. According to According to | According to the
ffcc ;;g’;;gyzo Khanda- Siryasiddhanta Modern
. Y : khadyaka. of Variha, Saryasiddhanta.
Of Saturn 8631° to 40° 40° 40° 39° to 40°
s Jupiter 6731° to 72° 72° 72° , 70° to 72°
s Mars 2293° to 2893° 234° 234° 232° to 285°
» Venus 2563 ° to 2653° 260° 260° 260° to 262°
,, Mercury | 1303° to 189}° 182° 182° 192° to 183°

ff;g;%’:gytf Khanda- Siryasiddhanta Modern
: khadyaka. of Vardha. Siryasiddhanta.
Of Mars 90’ 90’ 10 90’
. Mercury 120 120 135’ 120/
s, Jupiter 60’ 60’ 101’ 60’
,» Venus 120 120° 100 120/
. Satarn 120 120 135 100’
(7) Number | 1577917500 1577917800 1577917800 1577917628
of civil days in
a Mahdyuga of
4,320,000 years.
_8) Begin- Sunrise at Midnight at Midnight at Midnight at
ning of the as- Lanka. Lanki. Lanka. Leanka.

Dr. Bibhutibhushan Datta, late of the Calcutta University College
of Science, has obtained copies of the Madras Government manu-
seripts of the Mahabhaskariya and the Laghubhdskariya, two astro-
nomical works describing Aryabhata’s astronomy, composed evide'ntly
by one Bhiskara. The former of these books contains & passage
which corroborates the fact that Aryabhata I was the author of both

the audayika and the drdhardtrika systems of

astronomy. This

Bhaskara whom we should designate as Bhaskara I, was probably a



direct pupil of Aryabhala 1, as wo leurn from Pthuduknsvﬁmi"s

statement—
“q@UEIATRE Wag a9 geweiwara”
Prthidaka’s Comm. on B. 8. Siddhanta, XI, 26.

+ 8uch a mistake may have been made by Bhaskara and others;
they have not understood his (Aryabhata’s) intention.”’

The passage in the Mahabhdskariya, giving the constants of the
dardharatrika system runs as follows:—

‘ ' | fra; weat A AsertemE fafa
wiAEd gl @ fafia @ wER 1A
famal yfzd Jar wada = |

gy finfam adtea; iw*
wfe: g ArE) D@t g4 @
wremwift farm: qmaamxm W
afafearufgman fmad:
wEIE S T gEwe: gRfa ike
wewe for az fanfadifuan s
Zaw JERymR AN @ 14
szt afarma: sfeda 91
Qrza TgEEr @ MEFHAT HAEG U
wrzE: Qe @i
REAENR THET TEAT ¥ IRl
wafing qawodTd fdad
qrawrg fas an: afisd; wfewfean 1=
wrRQEIaY, S wwhrd” gureRdY: |
fiad g Rerat ad aafagd i
gonfR2agsamt wrlt i AR
' HRYEE NN Sy 2w (ke
fagurat & =it sfgaran war |
Qufyar werg arar AR e uan
Qafad afmafadma-wlaarg |
fade; @ A o qsdw@ Nfba; 1z

. % My attention to-the content of thia'stanza was drawn by Dr. B. B. Datta, D.8c.

TR Wi R ATAHEAT
Taq ¥ U aEIEIEa NL
DNAAQ TS GEhaTq QrEH<a: |
o ZAaETen: 99 filw A ke
Fifrrma fragarsafa
wxg gafeamg qwaif |
& | W waR aerat
wyl Wi @y ASFEETE N3
' Mahabhaskariya, VII, 3185,

These stanzas may be thus translated : —

21. *“The methods of calculation as seb forth in the preceding
gtanzas are the processes under the audayika system; the difference
which has to be made in the ardhardtrike system is being ptated
below.”’ . )

92. “‘Three hundreds (300) are to be added to the number of
civil days in & Mahdyuga, the same are to be subiracted from the
number of omitted lunar days. From the revolutions of Mercury
and Jupiter are respectively subtracted 20 and 4.”"

23. * Sixteen multiplied by one hundred are the yojanas of the
earth’s diameter; 6480 are the yojanas of the sun; 480 of the
moon."’

24, *“The distance of the sun is 689358 yojanas ; of the moon,
the same is spoken of as 51566 yojanas.”’

25, ‘¢Bixteen, eight, twenty-four, eleven and twenty-two
multiplied by 10 are respectively the longitude of the aphelia of
Jupiter, Venus, Saturn, Mars and Mercury.”’

26. “‘The epicycles of apsis are of dimensions 82°, 14°, 60°,
70°, and 28° respectively.”

97. “The peripheries of the epicycles of conjunction are in, the
same order, 72°, 260°, 40°, 234°, 132°. The periphery of the sun’s
epicyele is the same as that of Venus.”

28. *“ Of the moon 81° are the measure of the epicycle of apsis
in the ardhardtrika system. The lbngibudes of the nodes are to be
taken as the same as they are given by sages in the first system.”’

29, “To the longitude of the aphelion and to the heliocentric
longitudes of Mercury and Venus half & circle is added and three
signs (i.e., 90) are subtracted from the node in the case of each
of the rest in order to find the apparent node,’”



80. ““TIn the cases of Mars, Saturn and Jupiter, two degrees
are spoken of as corrections from the node as corrected by the
equation of apsis; in the cases of Venus and Mercury, a degree and a
half represent the correction from their heliocentric positions.”

31. *‘Of all the planets (Vibudhas) are thus given the Sighras
and nodes; the degrees of celestial latitude are found by subtracting
the planets from their nodes."’

82. ‘The determination of the sum or difference is made from
the directions, whether the same or opposite. The celestial latitude
thus found is to be known as true for a planet.”’

33. ' The same rule holds in another case (viz., finding the
true declinations); as to the remaining processes they are the same
as in the former system. This all in brief describes the other tantra
(astronomical treatise).”’

84. **The true mean planets are all obtained from the respective
aphelia which have been corrected by half the arcs of the Sighra
and Manda equations; this is another difference.’’

85, ‘*By 8240000 diminished by one zero, multiply the moon’s
revolutions; the result divided by the planet’s own revolutions,
gives the measure in yojanas as seen of their orbits.”’

Now from stanza 21, we gather that 300 is to be added to the
number of civil days in a Mahdyuga. According to the Aryabhatiya
the number of civil days in this cycle is 1577917500, which increased
by 800 becomes 157797800, the number of civil days in a Mahayuga
according to the Khandakhadyaka.

Stanze 22 tells us to subtract 20 and 4 respectively from
the revolutions of Mercury and Jupiter, and we arrive at the figures
17937000 and 864220 which are the revolutions of Mercury and
Jupiter in a Mahayuga according to the Khandakhadyaka.

From stanza 23, we get that—
The Earth’s diameter = 1600 Yojanas.
The Sun’s diameter = 6480 '
The Moon’s diameter = 480 '
This set may be compared with that of the modern Saryya-
siddhanta which says that

The Earth’s diameter = 1600 Yojanas. I, 59.
The Sun’s Rt = 6500 ,, . IV, 1.
The Moon's = 480 .« IV, L

The figures of the;Aryablatiya are—

The Earth’s diameter = 1,050 yojanas.
The Sun’s ’e = 4,410 v
The Moon’s " = 315

The nextb stanza gives the distances of the sun and the moon
as 689858 and 51566 yojanas respectively. The same figures as
worked out by Lalla according to the Aryabhatfiya are 453585 and
84377 in the Sisyadhivrddhida, TV, 8 and 4.

. The stanza 25, states the longitudes of the aphelia of planets
us:—

Longitude of Jupiter's aphelion = 160°
'e . Venus’ ' = 80°
's v Saturn’s * ,, = 240°
. . Mars’ ve = 110°
. v Merecury’s ,, = 220°
These agree with the figures of the Khandakhadyaka.
The next stanza states that:—
The periphery of Jupiter’s epicyle of apsis = 32°
ve ve ,» Venus’ v ss = 14°
'e ' » Saturn’s N = 60°
. . ,» Mar’s 5 s = 70°
. " ,» Merecury's ,, ,, ., = 98°

These also agree with those given in the Khandakhdadyaka.

In stanza 27, are stated the di i i
soniumction to b e dimensions of the epicycles of
72° for Jupiter.
260° for Venus.
40° for Saturn.
234° for Mars.
132° for Mercury.
These are the same as in the Khandakhddyaka.
In the next stanza the sun’s epicycle is stated to have a periph
of 14° and the moon’s epicycle, 81°; the longitudes of tﬁe : ;"Y
of the planets to be the same as in the Aryabhatiya. All the o are
the same in the Khandakhadyaka. o o are
The stanzas 29-32, state some special rules for finding t}
celestial latitudes of planets. In the next we have a pogsiti‘::

assertion of the existence of a @m™x or a separate treati
astronomy presumably by Aryabhata I.' e on



The next stanza gives rules for finding the geocentric longitudes
of planets which may be taken to be the same as in the Khanda-
khadyaka, 11, 18; modern Saryasiddhanta, II, 44; the Saryasiddhanta
of Variha in the Pafcasiddhantika, XVII, 6; but slightly different
from the Aryabhatiya, Kalakriya, 23-24.

The last stanza gives the dimensions in yojenas of the orbits
of planets ; these are the same as in the modern Siiryasiddhanta,
X11, 85-89,

We have shown that there is much resemblance in the constants
between the Saryasiddhanta of Varaha and the Khandakhadyake and
for the matter of that with the @@t of Aryabhata I In my
papers ‘‘Aryabhata’’ and ““Aryabhata’s T.ost work,” I have estab-
lished the fact that the Saryasiddhanta, as it existed before the time
of Variha, was made more accurate by him by borrowing the con-
gtants from Aryabhata’s ardhardtrika system. That there was &
Suryasiddhanta before the time of Variha, is seen from section 6 of
the table on page xii given before. This point is made clear from
another consideration, viz., the star table in the modern Surya-
siddhanta which unmistakably points to the conclusion that the
longitudes of some stars, ¢.g., Spica, etc., correspond to a time much
anterior to that of Aryabhata 1. The great fame of Aryabhata I
induced Variha, the first maker of a neo-Siaryasiddhanta to use the
elements of Aryabhata’s drdhardfrike system to supplant the older
materials in it. No wonder therefore that there is an opinion in
favour of the hypothesis that Aryabhata I was the author of the
Saryasiddhdanta. 1f there were a ghadow of truth in it, Vardha would
have® admitted it. Albérini indeed says that the Saryasiddhanta
was composed by Lata.* We now know that this Lata or Litadeva
was one of the first pupils of Aryabhata I. He was the expounder
of the Romaka and the Paulisa siddhantas, as we learn from Variha-
mihira’s Pafcasiddhantika, i, 3. As Albérini’s statement is not
corroborated by Varaha, we are not inclined to take it as correct.

Noue of the earlier writers suggest that the Suryasiddhinte was in
any way modified or changed by Aryabhata 1.

It has now been established beyond doubt that the same
Aryabhata was the author of the Aryabhatiye and another Tuntra
which is now lost. There is reason in support of the hypotheses that
this Tantra itself was the first work of Aryabhata I and that the

R

* Albérdni's India, Translation by Sachuu, Vol. I, p. 153.

Argabhatige was tlic second work from the order in which Varaha
mentions them in the stanza quoted before on page xi. If this
hypothesis be true the stanza in the Aryabhatiya—

weIRMi sfsderdiaEaTgaamET |

=1fumr fdafasrarde @@ swaisatar nyen

. Kalakriya, 10.
which was {ranslated by me as,

““ Now when sixty times sixty years and three quarter yugas also
have elapsed, twenty increased by three years have elapsed since my
birth,”’ '

Should now be translated thus :—

“In this Mah@yuga when sixty times sixty years and three quarter
Yugas also had passed, twenty increased by three years had elapsed
since my birth.”

Bhisgkara I, the author of the Mahabhiskariya and the Laghu-
bhaskariya, wrote a commentary on the Aryabhatiya.*

The author commenting on this stanza observes that

CERANE A e UEATRIERE 41 rgEEit arzda fragaataa; fag

‘ “Or this was addressed by Aryabhata when expounding the
science to Pindurangasvami, Latadeva, Nihéanku and other pupils.”’
This direct pupil of Aryabhata I also says that this stanza dt;es
not show that the Aryubhatiye was composed when Aryabhata I

was on?y 28 years old, but refers to the time when he probably
began his career as a teacher of astronomy.

The author of the Prakdsdikd,t observes

“umrEmfine 1 afewd Afedwmad i

T LEREET O :
wa RICICI S 1 G
The meaning of this stanza is this :—* That at this time, the
1x;;mleanfplame‘oxs;, the apogees and the nodes deduced by the rule of

ree from the planeta i itika
phres | P ry revolutions of the Dadagitikd would be
Hence we are not jilstiﬁed in concluding that the Aryabhatiya
was composed when Aryabhata was only 23 years old. In.'its
f)re:sent form it was the work of mature age and was done in a
highly finished ** | form, the date mentioned in it was the date

* Manuscript purchased tlmr)ur . i ibhuss
: gh Dr. Bibhutibhusan Dutta, D
P. G. Lending Library, Calcutta University. e o the
t Prakasika, the comum. on the Aryabhatiya by Sorya Deva Jajva
¥ Paiteusiddhantika, Introduction, p.ivi, ' .



when he became a gura or Lleacher, or the date for which the
mean positions would be correet and for subsequent times some

corrections were necessary.
Brahmagupta’s Originalily i the Khandakhadyaka.

We havé already noted in the outline, some points of originality
shown by Brahmagupta in the Khandakhadyaka, Some details are
here siated. He does not accept the system of Aryabhata’s
pstronomy which he has gimplified in the Khandakhadyalka proper
ag correct. Brahmagupta gives his own corrections to this first
part of the work, in the Uttara Khandakhddyake. TIn this part
he states the longitude of the sun’s apogee to be 77° whereas in
the Khandakhadyaka proper it is given as 80°. 1t has been shown
in the translation that Brahmagupta is more correct than
Aryabhata.* Again Brahmagupta detected that Aryabhata had
made the moon’s apogee quicker, and nodes sl>wer, than they really
are. It has been shown in the translation that Brahmagupta
made an over correction in either case.t Again Brahmagupta
states that the longitude of Mars’s aphelion should be increased
by 17° and that of Jupiter by 10°. It has been shown in the
translation that Brahmagupta was more correct than Aryabhata.}
These facts establish the point that the great Indian astronomers
from Aryabhata I to DBrahmagupta were aware of the methods of
separating the two distinct planetary inequalities, viz., that of the
apsis and of conjunction in the cases of the five ‘star’ planets.§ In
the Khandakhadyaka, Brahmagupta having given the ‘‘sines’’ and the
equafions of the sun and the moon at the interval of 15° of arc of the
mean anomaly, in the Uttara Khandakhadyaka teaches, for the fireb
time in the history of mathematics, the improved rules for inter-
polation by using the second difference. This has been detailed in
the translation on pages 141-42, and also in the DBulletin of the
Calcutts Mathematical Society, Vol. XXTIII, No. 8 (1981). In the
case when the function is not tabulated at o constant interval, his
rule is equally remarkable. Another rule given by Brahmagupta
in Chapter VI, stanza 1, is equivalent to the formula

= 2 _ = 2% . inplane trigonometry.

" Translation, p. 139, 4 Ibid, pp. 140 and 144-46.
1 Ibid, p. 144, . § Paficasiddhantika, Introduction, lii.

Brabmagupta ‘also corrects the dimensions of the epicycle of npsis
of the sun and the moon by — L,nd part and +  4th parts respec-
tively.* His correction to Saturn’s epicycle of apsis is —4th
part and that to the Sighra epicycle of Mereury +y%th part.t
Again in the Khandakhadyaka proper, the treatment of parallax in the
calculation of so lar eclipses Brahmagupta does not follow Aryabhata.
The methods here followed by him are the same as that of tile
Brahmasphutasiddhdanta. As has been alr eady remarked these
corrections and innovations in the Uttare Khandakhadyaka, paved the
way for the acceptance of his great work the Brahmasphutasiddhanta
as a standard work on astronomy by the western Indian. school of
astronomers. The directness of the treatment of topics, and the
simplicity of calculation taught in the Khandakhddyaka made it a
very neat handbook for the beginner. These two works of Brahma-
gupta were perhaps the only astronomical works in circulation in
western India when the Arabs conquered Sind early in the eighth
century (712 A.D.) and the new conquerors learnt Indian astronomy
and Mathematics from these works as has been observed by Sachau.
Albérini who came to India early in the 11th century of the Christian
era, learnt Indian astronomy chiefly by studying the Khandakhidyaka
and the Brhat Samhita of Varahamihira, and both of them with the
help of the commentary of Bhattotpala.

Albérani and the Khandakhdadyaka.

Sachau in his translation of the Indike of Albériini, has shown
that Albérinl has .made the following references or quotations
from the Khandakhadyalka proper and its supplemeuntary or the
Uttara portion.

(@) A reference to the accepted circumference of the earth
in the Khandakhddyake in i, 15 of our translation (Sachau’s
Albértmi, Vol. I, p. 812).

(b) The rules for finding the ahargana as given in the
Khandakhddyake in i, 8-5 of our translation (Sachau’s Albériini
Vol. II, 46-47), to which Dr. Schramn adds a valuable annotation'
the constants being taken from the later Paulisa Tantra as know;l

Ibid, p. 148.
Ibid, p. 144.
Cf. Brahmasphitasiddhinta, xi, 33.

o o



to Bhattotpala. ‘This Puulisa astronomy is derived  {roun Avyubhata
I's ardhardtrika system.*

(¢) A quotation from the [/ltura KhaLz(]tllclz.aitlg/rzlx'(l (Sachau’s
Albériini, Vol. 11, pp. 84-86) which in our translation is Chapter X,
pp. 148-152.

{d) A quotation also probably from the Uttara Khandakhadyalka
(Sachau’s Albériini, Vol. IL. p. 87). 'These stanzas are found in
the  Brahmasphutasiddhanta, XTIV, 47-52, also quoted by
Bhattotpala as occurring in the Brahma Siddhanl« in his commentary
on the Brhat Sawuhitd, 1V, 7. The manuscripts which we have
used do not show them as occurring in the Uttara Khapdakhadyala.
These relate to the dimensions of the naksatras as scen, as distin-
guished from the same as calculated.

(d) Two quotations from the Uttara Khandakhddyaka relating
_to the celestial co-ordinates of Canopus and Sirius (Sachau’s
Albérani, Vol. II, p. 91). Our manuscripts do not show these
stanzas, which are probably the same as stanzas 35-36 and 40
of Chapter X of the Brahmasphuta-siddhanta.

(¢) Two quotations from the Khandakhadyaeka proper as alleged
by Albérant (Sachau’s Albériini, Vol. II, p. 116). According to
Amaraja, the first is a couple of stanzas of which the author is
Bhattotpala and not Brahmagupta.t The second quotation cannot
be traced. These relate to finding the possibility of an eclipse
whether of the sun or of the moon.

(i Two quotations from the Khandakhadyake proper as
asserted by Albérini (Sachau’s Albérani, Vol. IT, p.119). These
relate to finding the Lords of the year and of the month. According
to Amaraja the rules in question were given by Bhattotpala and
not by Brahmagupta.l Prthiidaka in his commentary on the first
chapter at its concluding portion says =eisa Woarad aifyuararfuar
qgwara@amtafed, i.e., “In this work the Khandakhdadyaka the
teacher (Brahmagupta) has not given the rules for finding the Lords
of the year and the month.”’

There are, besides these, mention of this work in many other
places in Albérant’s Indika.

ri

% P. C. Sengupta, Aryabhata the Father of Indian Epicycle Astronomy, pp. 83-41,

als o Paficasiddhantika, Introduction, xxxviii.
4+ Khandakhadyaka, Pt. B. Misra’s Edition, p. 145.
§ Ibid, pp. 48-49. L

Orgenal Conlents of the Khapdakhadyaka.

The Khandakhddyaka as composed by Brahmagupta was a work
of eleven chapters; the Khandakhadyaka proper consisted of 8 and
the Uttara part of 3 chapters.

Our translation which follows P;ﬂlﬁdaka’e- text, presents the
first eight chapters faithfully, and we have been partially
successful in reconstructing the first two chapters omly of the
supplementary parl, which according to our inferemce had three
chapters in all; these werc probably

(1) Introduetory Corrections and New Methods,
{2) Conjunction of Stars and Planets. C
(8) Projection of Eclipses,

One manuscript at our disposal which we have so long taken
as following Bhatfotpala’s text shows one more chapter, viz., on
Patas. T1f there was really a chapter on this topic, Prthudaka
would not have been under the necessity of giving his own rules
and illustrations. e has indeed given his rules in no less than
twenty-five stanzas of his own, in the concluding part of his commen-
tary on Chapter I.

At any rate we cannot be sure if the Ultare or the supplementary
part had a chapter on the Pdles. The stanzas on this chapter
given in thp manuseript which we have referred to above, do not
read like Brahmagupta’s composition,

That there was a chapfer on the projection of eclipses we learn
from the following evidences from Prthiidaka himself. These occur
in his commentary at the ends of the Chapters III and IV.

(a) wEEEHUR AT REERRTG A |

(b) =ifemrred Hia% wwod guf@w Gty Qram: |

Here he promises to illustrate and explain in detail the projection
of lunar and solar eclipses in ‘the supplementary or Utlara part.

The faulty materials at our disposal have made us give up our
attempt at translating the chapter under reference.

Khandakhadyaka and its Commentators,

Owing to the simplicity of caleulation that the Khandakhadyaka
taught, it was for a long time, in faét for many centuries, used as



a practical handbook for a learner of astronomy in lndia. Alberuni
in his Indika early in the eleventh century of the Christian ers,
noticed that ** the cannon Khandakhadyaka is the most universally
used among* the Hindus. Of the many commentaries on it written by
different writers the most known ones were by Lalla,+ Bhattotpala,
Prthidake, Someévara, Varuna, Amarija and others. Of all these
commentators, Lalla appears to be the oldest; of Bhattotpala we

- _know that his time is about 888 of Baka era or 966 A.D.; the .

times of the remaining authors are not important from the view-point

‘of history As to Lalla the name of his commentary is the Khanda-
khadyapaddhati.} Lalla is again the author of the Sigyadhivrddhida;
the question is whether the two Lalla’s are the same or different
persons. We are of opinion, it was the same person who composed
the works. The reasons are set forth below :—

(¢) The first evidence in our favour is obtained by comparing
the longitudes of the ‘‘ Junction stars *’ given in the Brahmasphuta-
siddhanta and the Sisyadhivrddhide. Some of these longitudes
given in either book should be considered as traditional and some
corrected by the authors of these two works. TFor Bentley in his
Hindu Astronomy has shown that Brahmagupta’s star tables give
different values of total precession for 1690 A.D., as obtained from
different ‘ junction stars.’§ Lalla says that his longitudes of ‘junc-
tion stars’ are ghfa: wxifxan,q i.e., “‘declared by munis.”” Who
these munis were are not stated at all; many of these longitudes
were traditional and some were corrected by Lalla himself.
Bentley’s investigation of Brahmagupta’s table leads to, for the year
1690 A.D., different values of total precession varying from 18° 24
to 14° 8. From Brahmagupta’s time (628 A.D.) to 1600 A.D., the
total shifting of the equinoxes should be sbout 15°. We would
take an error of 1° in his observations and 16° to be the superior
limit to the value of the precession, as the criterion for finding which
of the longitudes of the junction stars were corrected by him,

¢ Bachau’s Albérini, Vol. IT, p. 119.

+ Khandakhddyaka, Pt. Babus Misra's Edition, p, 1.
8. B Dixit, wyiata ﬂ’?f“a:rmi;, p. 234.

B. Misra’s Rdition, p. 27.

++

Bentley's Hindu Astronomy, pp. 83-84.
Sigyadhivrddhida, X1, 8.
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Judged by this; test, his corrections were most probably confined
to the cases of :—

Punarvasu

Magha Ardra
P. Phalguni Ablesi
itrd (1
Citra (1) Hasta
Visakha Citra, (1)
Anuradha and Lalla’s corrections o
Toesth similarly were in cases { U- Asidha (2)
thi
yestha of Ablijit
P. Agadhi
Sravani
U. Asadha (2
sadha (2) Dhanisthé (3)
Dhanisgthd (3 .
anigthi (8) P. Bhadrapada (4)
P. Bhadrapada(4)
Revati

The common stars whose longitudes were corrected by Brahma-
gupta and Lalla are :—

Polar long. according | Polar long. according
to Brahmagupta. - to Lalla. Excess.
Qitrda ... 188° 0 0~ 184° 20’ 0” 1° 20
U. KgBdbd 260° O 0" 267° 20 07
Dhanigthd -, 290° 0 0” 296° 20" 0"
P, Bhadrapada ... ] 826° 0 0 321 0o 0 1° 0

In the cases of U. Agadhd and Dhanistha, Brahmagupta and
Lalla most probably mean different stars. The mean excess comes
to 1° 10/, from which Lalla, the author of the Sigyadhivrddhida
becomes later than Brahmagupta by about 85 years. His date hence
comes to about 685 of Saka era or 713 A.D., the date of the Brahma-
sphuta-siddhanta being 550 of Suka era or 628 A,D.

D




If we consider all the stars of which the polar longitudes as given
in Lalla’s work are greater than those in Brahmagupta's we are .led
to a different date for Lalla:

Bar, | Rolte Jong, weeond: | Polar long. fecord | tacon.
. Lo — et e
Ardra 67° ‘ 70° { 8°
Adlesd 108° 114
Hastd 170° 178° 3°
Citrs 183° o1 oo 1° 20
U. Xeddhd 260° ! 267° 20
Abhijit 265° 267° 2° 0 0
8ravanh 278° o 219° 50 1° 50° 0"
Dhanistha 200° 296° 20/
P. Bhadrapads 826° s27° 0o _1__ 0__0:_
12° 10' 0"

Average of the six stars gives a mean excess of 2° 1/ 40”. This
would make Lalla’s time later than Brubmagupts’s by about
140 yesrs. Hence Lslla’s time becomes 768 A.D. or 690 of Saka
era. Thus Lalla must have lived between 713'A.D. and 768 A.D.

There is & significant passage in Lalla’s great work the Sigya-

dhivpddhida, which runs as follows:

W TEfEd (fseE wewd; wafd TnaE o |
Tenfaifin; gaad ¢ (R fa@urg A (g Feavmians |
wRTTRfN fefrRee T PR |
frrf 8z fred faadawsd Ratrgyeegwaang o 9 o
'This passage occurs twice in I, §9-80 and XIII, 18-19.* It
cccurs in its proper place in the first chapter which treats of the
mean motions and in the thirteenth chapter, where the author

gives his genealogy. The corrections which the stanzas give to the
mean positions of planets as calculated from its constants are thus

expressed : .

»  Sigyadhivrddhido, Mm. Budbskera Dvivedi's edition (1886),

“BSubbract 120 from the Saka year elapsed; multiply the
remainder severally by 25, 114, 96, 47 and 153 and divide in every cass
by 280; apply the resulting minutes negatively in the following order:
to the moon, moon’s apogee, moon’'s node, Jupiter, and the Sighra
of Venus. Again multiply the same remainder severally by 48;
20 and 420, divide by the same divisor 280; apply the resulting
minutes positively in the order—to Mars, Saturn and the Sighra of
Mercury.”’

Here the divisor 250 shows that all these corrections, viz., —2§,
—114/,-96/, - 47", - 158/, +- 48/, +203 and + 420’ were found by Lalla
250 years after the time, 420 of Saka era. Hence Lalla’s time is
670 of the Saka era or 748 of the Christian era. Brahmagupta’s
time being 628 A.D., Lalla flourished 120 years after him. Wa are
thus led to the conclusion that it was the same person who composed
the Sigyadhivrddhida and wrote the commentary Khandakhddya.-
paddhati on the Khandekhddyaka of Brahmagupta.* ‘

Now the Khandakhddyaka was composed about the year 587
of the Sska era or 665 A.D, The date of the first commentator,
Lalla, has been slIBwn to be 748 A.D., the next commentator,
Prthiidaka lived about 864 A.D. Bhattotpala about 966 A.D,
and the last commentator lived about 1180 A.D. Thus the Khanda-
khadyaka was held in very high esteem for more than six centuries
among the distinguished Hindu astronomers and almanac-makers,
Taken with proper corrections to the mean positions of planets its
rules stand on a par with those of the modern recension of the
Siuryasiddhanta, as has been demonstrated in the present trans.
lation specially in the caleulation of eclipses.

Prthadaka’s text has been followed throughout in this translation.

In cur opinion this text gives the stanzas of the work in the

order in which they were composed by Brahmagupta. Whenever

Prthadake takes up a stanza from a later chapter to explain a
4

* Talla's indebtedness to Brahmagupta is also seen from his rule for finding the
instantaneous daily motion of a planet affected by the $ighra equation, in the
Sigyadhiwrddhida, II, 45-46, as also from the $ighra anomalies (IT, 47-48) for the
stationary points of planets. Both of these are taken from the Bréhmasphuta.
siddhanta, 11, 48-44 and 48-49. According to Budh8kara Drvivedi, Lalla's time
is 420 of Saka era and according to Sankars Balakrgna Dixit, 560 of the Szks era,
These views are not now tenable in view of our finding. Cf. also our paper,
‘* Aryabhata,’’ loc. cit., p. 88,
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certain topic, he invariably repeats it in its proper place. In one
place he apologises as folllows : —

searadsumy arend asfaefs T |
{.6., **In this chapter whatever has been explained in ex?ess or
defect is respectfully requested to be pardoned by the learned.’

In Amaraja’s text as also in the text which we have _taken
as Bhattotpala’s, the stanzas from the Uttara Khandakhadyaka
are mixed up with those of the Khandakhadyala pf'oper. 'I:he
Berlin manuseript in rotographs, which has been used in preparing
this translation breaks up abruptly at the beginning of the Utlara
part. It has not been possible to partially reconstruct more than
two chapters of the Uttara Khandkahadyake from the faulty

i ur disposal,

mat';?al;:ttiauslagon proper have been added three of my papers
as appendices. The first two will, it is hoped, bring to prominence
the independence of the Hindu astronomers as regards the const-ants
in luni-solar astronomy and a3 regards the methods ' of Hindu
_Spherical Astronomy. The third appendix gives an 1dez? of :l:)e
planetary motion as it was understood by the great Indian astro-
nomers from Aryabhata I to Bhaskara 1I. .

Much help has been derived, in the work o‘f translating the
text, from the edition of the Brahmasphuta Stddhdwlmta by the
late Mm. Sudhakara Dvivedi for which I express m.y mdebtedness;’
All references to this earlier work of Brahmagupta 1n the presen
ranslation refer to this learned edition.

.

P. C. SENGUPTA.

Sexagesimal Units of Time

60 Bipalas (Vipalas)

1 Pala, Binadi (Vinadi), Binadika (Vinadika).

60 Palas = 1 Ghatika, Nadi or Nadika.
60 Ghatikas = 1 Day.
6 Asus

1 Vinadi=24 Seconds; an Asu=4 Seconds.
Linear Units.

6 husked barley corns in breadth = 1 Anguli* (finger-breadth).
24 Angulis 1 Hasta (cubit)
4 Hastas = 1 Height of man or the bow.

8000 Heights of man t = 1 Yojana.

According to the Khandakhadyaka, the length of the earth’s
equator =4800 yojanas; heneg 1 yojana=5 miles nearly. According
to the Brghmasphuta-siddhania} and the modern Siryasiddhdnta,

a yojana is similarly =5 miles. As measured here by husked barley
corns, one hasta becomes =19°5 inches very nearly.

Definitions of Cerlain Terms,

Aksadrkkarme—The process of applying the necessary correction to
the ‘polar’ longitude of a planet to find, at the observer's
place, the point of the ecliptic which rises or sets simul-
taneously with the planet.

Ayanadrkkarma—The process of applying the necessary correction to
the celestial longitude of a planet to convert it into
‘polar’ longitude.

Saka era or the era of the Saka king is now understood to be the
era of King Kanigka of the 8aka dynasty of Peshawar.

The relationship with the Christian era is this:

Christian era=8Saka era+ 78 years.

* Brihmaesphuta-siddhanta, XVI, 12; Bhaskara II, however takes one anguli=8

barley corns in breadth. Cf. Albérani, Sachau, Vol. TI, p. 166.

+ Aryabhatiya, Dasagitika, 1. .
t Brahmasphuta-siddhants, I, 36. Surya-siddhants, I, 59.



AAXA -

Sanlu—7he gnomon,;ﬁ eonieal solid 1
Sighra anomaly—The

Sighra equati

Sig

2 digits in length or height, the
diameter, of the base being 2 digits.*

"angle formed by the line joining the earth and

sun produced, with the heliocentrio radius vector of a planet.

on—In the case of an inferior planet it roughly
represents the elongation and in the case of a superior
planet it is very.nearly the annual parallax.

hrocea or Sghra—In the case of an inferior planct it is the mcan
heliocentric position ; in the case of a superior planet it is
the mean position of the sun.

Trigonometrical Functions.

‘Qine’'—The Indian sine of any arc is defined as the distance of the
end of the radius from the teast-west’ or horizontal line.t

‘Cosine’—The Indian cosine of an arc is the distance of the end of the

radius from the ‘north-south’ or vertical line.t
«Versed sine’—The Indian versed sine of any arc is the arrow of the
double arc lying between the arc and the chord.

The translator himself is responsible for the following mistakes
occurring in his work and requests his reader to correct them before
going over ib.

Page 80, Line 83, for vydtipdte read vyatipdta

1B 81 1) 3 Do. ’s Do.
o T 9, asus (=6 sec. of time) ,, asus (=4 sec. of time)
112 ,, 26 ,, opposition ,, conjunction

3
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% Brahmasphute-siddhanta XXTI, 89. Cj. Bhaskara 11, Gole, IX, 9.
+ Bhaekars 1T, Grahaga' ita, 1T, 18.21, Commentary.
1 Bhaskara II, Gola, Jyotpatti, 5, also Gola, 111, 8.

¢

CHAPTER 1

On Tithis, Naksatras, etc.

1. Having made obeisance to God Mahadeva, who
is the Great Cause of this world’s Rise (i.e., creation),
Existence and Destruction, I shall declare the Khanda-
khadyaka (i.e., a short treatise on astronomy, which is
as pleasant as food prepared with sugar-candy), which
will yield the same results as the great astronomical treatise
of Aryabhata. \

By Arysbhata, is here meant Aryabhata I, who lived from
476 A.D. The Indian astronomical treatises are divided into three
classes: (i) Siddhaintas, (i) Tantras, and (i) Karapas, The
Siddhantas are those of which the calculations start from the
beginning of the ‘‘creation,”” the Tantras reckon time from the
beginning of the Kaliyuga or 3102 B.C., while the Karanasdfrom any
subsequent specified time. We shall see that the Khandakhadyaka

is a Karana.

9. As in most cases calculation by the great
work of Aryabhata, for (the knowledge of time and
longitude of planets, etc., at) marriage, nativity, and the
like, is impracticable for common use every day, this
smaller treatise is made so as to yield the same results
as that.

This stanza shows the necessity for the present work The mnext

stanza describes the finding of what is known as ahargana, or the
number of civil days elapsed since the.epoch 587 of the Saka era,



3.5, Deduct 587 from the Saka year, mulliply the
remainder by 12, to this result add the number of lunar
(synodic) months elapsed from the light half of Caitra;
multiply the sum by 30 and add to it the number of tithis
elapsed : put down the result increased by 5 separately in
two places. In one place divide by 14945; by the quotient
diniinish the result in the other place, and divide it by 9763
by the quotient of intercalary months reduced to lunar days,
increase the result in the original place ; put down the
result below (i.e., in another place), multiply it by 11 and
add to it 497 ; put down the sum below (i.e., in another
place) and divide by 1115783, diminish it by the quotient
obtained from the sum in the first place ; divide the new
result by 703 and by the quotient of omitted lunar days or
tithis, diminish the result. The final result is the ahargana
and begins from Sunday.

We illustrate the above rule from Prthiidaka’s example :—
Required the ahargana in the Suku year 786 at the end of the 11
tithis and one lunar (synodic) month from the light half of Caitra.

Process : —

786 — 587 =199.
Now 199x12+1=2388+1=2389 total golar months,

Again 2389 x 30+ 11=71670+11==71681 total solar days.

71681 | T8l
—- - 75 (6 75-
14945)71686 71686

4 da. 47 gh. 47 pa. 4 da. 47 gh. 47 pa.

71681 da, 12 gh. 18 pa.

Now 71681 da. 12 gh. 18 pa.= 976 da. x 73+ 438 da. 12 gh. 13 pa.
Thus the number of intercalary months=73.

The remainder 488 da. 12 gh. 13 pa. relaling to the intercalary
mionths is increased by 17 ghatikas, for a purpose explained aflerwards.

Hence the true remainder relating to intercalary months is taken
ab 488 da. 29 gh. 13 pa.

Now 78 x 80==2190 ; this is added to.71681 or 71681 +2190, i.c.,
78871 is the total number of tithis or lunar days elapsed.

10U LU il Uleesey Ble following operations :

78871 x 11 +-97 which is equal to 813078.

o e This is put down in

11

813078 8L |
]1157(;:7 da, 17 gh. 14 pa. 8078 da.
¢ 7 da. 17 gh. 14 pa.

818070 da. 42 gk, 46 pa.

=708 du. x 1156 + 402 da. 42 gh.
. ‘ 46 pa.
. Here, in the 2nd place, the remainder 402 da. 42 gh. 46 pa. is
increased by 14 gh. for a purpose which will be explained aft.erwar.ds

The t!‘ue rem inder relatin o ()Ill‘ 16(] l n k
a g t lt y 1 a
0‘) . ) . . unar da S 1S thS tc en Sl,f:

The quotient 1156 representing the integral number of, omitted
. omitte

lunar days is now subtracted f
rom the total 1 ;
the «hargasna is now, 73871 —1156 or 72715 e days, 79T, and

Now 72715=7 x 1087 + 6.

As the remainder is 6 the dﬂ e en l of whic
' ) ab t'h i
1 : ’ o T ' y 4 hl h t.he aharg(ma

] ' ¥
Sefore we can take up the explanation of ﬁfle above rules

have to remember the meaning of the following terms : "

A solar (or saura) day=Interval of time in which the sun mo
through one degree of longitude; so that 30 solar d i
month and 12 months=1 year. e

n tet Calal y month or an 1] masa =g Sy][()(h(} mont
@ b . tl dh F of] —
h

which is left out in the adjust
the solar. justment of the lunar calendar to

A tithi=a peculiar time unit in which the moon gaing 12° of
0

longitude over the sun. It s
. 8 mean value ig g()th of the

synodic month and slightly less than a civil day

In the stanzas 8-5, the numbers 5 and 497 are additive quantitj
ities

and need not be considered at i
present. The rules su
S solar days, the number of intercalary months, I, is ggifzztbtbab o
v + ? y

S(l-—-l ) .
14945 ) “g76 = 1



Now in a Mahdyugu of 4320000 years
solar days,

. there are 4320000 x 360

Heuce the number of intercalary months in a Mahdyuga
by Brahmagupta’s rule is

(4820000 x 360)( 1-; 49 o )

_ 1452556800000

2280
. = 911645 .= 1593386577577

911645°

Hence according to the Khandakhddyaka the number of inter-
calary months is 1593336.

Now the number of solar days in & Mahdyaga
= 4320000 x 12 x 80 = 1355200000,
in.1 saura day the number of intercalary months

1593336

1
1555200000

104064
916 1593336

-1
G7¢ — % suppose.

. 1 1
v L=

076 104064
¢ 22 %
9 1593336 >

1 1
= e ¢ - ~
976 * 11015 96480

104064

1 1
. 576 X {30945 nearly.

R U W B
976 104064 976 976 " 14045

1593336

- 976( T 14945 )

This shows the method by which Brahmagupta arrived at his
rule:*

Agsin in a Mahdyuga of 4320000 ygars
the number of sun’s revolutions

= 4820000;
the number of solar months - == 51840000.
The number of intercalary months = 1593386;

“the number of synodic months

=-58433336.
Hence the number of revolutions of the moon

= 57753336.
The number of tzthzs in a Mahdyuga = Synodic months x 30

= 1608000080.

The stanzas next teach us how to find the omitted tlthta in N
number of tithis.

The rule is:

Omitted tithis for N tithis = N x

7T)§ “r11573)'
Hence for 1608000080 tithis of a Mahdyuga, the number of
omitted tithis

11 x 111572 x 1603000080
703 x 111573
. 1967349174183360
78435819

3060

= 25082280 — 78435819"

Thus according to the Khandakhddyaka, the number of omitted
tithis in & Mahayuga is 25082280.

Here Brahmagupta simplifies the fraction, and takes,
25082280

Jo0280 AL (y_ 1)
1608000080 = 703 111573
The steps appear to be as follows :—
25082280 — 627057
1603000080 40075002
101 11
63+ 1+ 10+ 144777
11+

= 755 © suppose,

* (f. the Ssnakrit commentary of Amaraja in Pt. Babua Midra’s edition

‘ol



= 11 _ 627057
T 703 40075002
_ou 89t _ 1
= 708~ 440825022 ~ 708~ 115739
_ 115 33961_
11 1
nearly.

= X ——
703 111573

25082280 _ 11 (1 1 )

T _eotibeaty - o 21 -
hus 4503000080 — 708 111573

4

The convergent L1 was known to the author of the Romakd

703
Siddhanta.*
We next turn to the additive quantities 5 and 497.

"The number of years elapsed since the beginning of the Kaliyuga
till the end of the 587 of the Saka year '
= 3179 +587 = 3766;
-, the number of solar days = 3766 x 360
= 1355760.

Now 1355760+ 14045 = 90 da. 43 yh.

1855760 =90 da. 48 gh. = 155669 da. 17 gh.

Again 1355669 da. 17 yh.= 476 du. x 1389+5 da. 17 gh.

Here the remainder is & da. 17 gh. Brahmagupta adds these 5
days to the total solar days in finding the adhimasas. These 17
ghatikds are added to the remainder in the process for finding the
intercalary months.  The quotient 1389 represents the number of
intercalary months in 3766 years

Now 1380 synodic mounths = 41670 tithis.

- the total number of tithis in 3766 years = 1355760 + 41670
: = 1397430.

Now 1307480 x 11 = 15371730

15371780
111573
15871780 da. — 137 da. 46 gh. = 15371502 da. 14 gh,

la. = 137 da. 406 yh.

15371592 da. 14 gh. = 708 du. x 21865 + 497 da. 14 gh. -

Here the residue is 497 da. 14 gh. In its place Brahmagupta
directs the adding of 497 da. in finding the omitted lunar days. The
remaining 14 ghatikds are added to the remainder corresponding to
the omitted lunar days.* aY

Here the total ahargana from the beginning of the Kaliyuga till
587 of the Saka era, B
== 1897430 — 21885
= 1375565.

Now ~ 1875565 = 7 x 196509 + 2.

Hence the 18t day of 587 Saka year elapsed falls on a Sunday,
counting a Friday to be the beginning of the Kaliyuga.

The remainders are not essential to the finding of the alargana;
they are, however, as we shall see later on, used to find the
longitudes of the sun and the moon without finding the ahargapa—
a new process by which some tedious calculations are avoided.
Again the process of finding the vhargana is rather cumbrous. We
are here to find the number of civil days corresponding to a certain
nuraber of years, months and days; this is best done by taking the
length of the year as will be shown below. In practical calculations
the synodic months and tithis are cumbrous and unnecessary
elements; the number of civil days elapsed since the beginning of
the year are more easily counted. If, however, the solar calendar is
not at all used, as was the case at the beginning and even now in
certdin parts of India, then the synodic months and tithis have to be
applied.t

Agalin in the first steps of the rules, in place of solar months and
solar days, the synodic months and tithis are added to the solar
days. This is an appareuntly wrong process. But as neither of the
remainders in the two divisions (here in this book, there are four)
is taken into account ‘n calculating the ahargana, this irregularity
does not affect the final result.}

As has been shown above, the number of omitted tithis or lunar
days in a Mahdyuga, according to the Khandalkhadyaka is 25082280,
. v g

% QOf. Pafica-siddhantika, i. 10; also Sanskrit commentary by Amarsja. .

*  (¢f. Amardja’s Sanskrit Commentary.

t As to this metbod of calculating the shargana, cf. Padcg-siddhantika, i, 8.10:
Brahmasphuta-siddhanta, i, 29-30 ; the modern S#rya-siddhanta, i. 45.61, etc. '

1 Cf, Siddhanta-siromani, Madhyagati-vdsand, 16-18 Com. thereon.



Hence the number of civil days in a Mahdyuga

= tolal number of lunar days

— total number of omitted lunar days.
= 1608000080 — 25082280
= 1877917800.

According to the Aryabhatiya, the number of civil days in a
Mahdyuga = 1577917500, There is thus a difference of 300 days.*
Woe shall‘see later on that according to the Khandakhdidyaka, the
beginning of the astronomical day is not the sunrise at Lanka.t

Now the length of the year according to the Khandakhddyaka is

1577917800 _ 202207
4320000 800

ays.

Prthidaka apparently wanted to find the numler of integral civil
days in 199 years and 1 month.

The total number of days or ahargana

1 292207

= 1999% 7500

L 3655 near
= li)ﬂﬁx3604 nearly

72684-75 + 30°43
72715-18.

Hence the integral number of civil days or ehargana is readily
seen to be 72715 and is readily checked by considering the day of the
week on which tho ahargana is desired. If the ahargana is required
for a longer period a closer approximation to the year is necessary.

To find the number of days in 3766 years.

The reqyired number of days ?ﬂ:q%?g—%%

= 1375564 45.

This has been found before to be 1375565, the difference is
made up by considering the day of the week of the last day of the

ahargana.

*  On this point ¢f. Paica-siddhantikd, i. 14; ix. 1; also Introduvction to the
same, p. xvii j Brahmasphuta-siddhanta, x. 5.
t Cf. Pailca-siddhantika, xv. 20 sud the Brahmasphuta-siddhantas, x. 13-14, '

6.3+ The two remainders relating to thé intercalary mont!.«
and othntted tzthl's are to be increased respectively by 17
and 14xghatzkda-v’ the moon’s apogee and the node are 1o
be madb-iess | by 5 and 10 seconds of arc respectively.

7. The mean Saturn diminished by 3 ‘seconds, the
Sighrocca of Mercury diminished by 22 seconds, the mesn
Mars increased by 2 seconds and the mean Jupiter inecre.-- i
by 4 seconds are equal to the respective mean planets
of Aryabhata's ‘‘midnight’’ system.

The next stanza teaches us how to find the sun’s mean loogitii.l-,

8. From (the ahargana found before), multiplied t,v

800, and increased by 438 and (finally) divided by 202207

are obtained in revolutions, etc., the mean sun, Mercury
v !
and Venus and the Sigh roccas of Mars, Jupiter and <a.urn.

The rule is equivalent to this:—

hargana x 800 + 438
Mean sun = rargana X o0l 298 .
902207 revols. ete.

The only figure that requircs explanation is 438. Thisis th.s
obtained : —The aharganae found till the end of 587 of the Suaia ery 13
1375565.

Now 1375565 x 800=292207 x'3766 + 438}

Hence as the calculations of the Khandakhadyaka really sta.s
from the beginning of the Kaliyuga, 438 occurs as an additive.

From Prthiidaka’s example, we have the ahargana=72715.

S, mean sun ﬂ.t the time mentioued before) i.e » ut VAT
. e J;,, g

— 72715 x 800+ 438 __ 58172438

202207 T 292207 '
23245
= 199 I
revols. +29 3307 revols.

= 199 revols. 0 signs 28° 88’ 16",
omitting the entire revolutions the mean aun=()'gign 28° °3 157
2
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9. The mean sun increased by the number of. degrees

equal to the tithis elapsed multiplied by 12, together with:.
the quotient taken as degrees, of 3 times the remainder: -

relating to the omitted tithis divided by -13% -becomes the
‘midnight’ mean moon. 173

mean mooh —mean sun
i 12°
= Tntegral tithis elapsed + fraction of a tithi elapsed.

Now,

- mean moon = mean sun + 12°x integral tithis elapsed
+ 19° x fraction of a tithi elapsed.

Here the integral tithis elapsed are known. The tractional part of
a tithi, till the end of a given ahargana
=Remainder relating to the omitted tithis in finding ahargana,
708 -

i expressed in civil days.
Now 708 tithis = (708 — 11) or 692 civil days

- 1civil day = 'ég% tithis.

. the fractional part of a tithi required—

_ Bemainder in finding omitted tithis 703

708 X 892
Hence 12° X the required fractiohal part of a tithi

__ Remainder in finding omitted tithis 703
= - — X — x 12°
703 692

g0 oo ,
75 = Remainder in finding omitted tithis.

[llustration.—In finding the ahargana, the elapsed‘ tithis were 11,
and-the remainder in finding the omitted tithis, 402 da. 56' 46".

Here 11x12° = 132° = 4 signs 12°
402 da. 56’ 46" x 3°
d e Yl L. = o =y "
an 173 6° 59’ 15",
Now the mean sun = 0 signs 28° 38’ 16" ;
- the mean moon = O signs 28° 38' 16”+4 signs 12° +8° 5’ 15" -
= 5 signs 17° 37' 81",

The next stanza teaches us how to find tl;e mean moon from the
ahargana.

10: Or, from the ahargana multiplied by 600 and
increased by 417} and finally divided by 16393 is obtained
in revolutions, etc., the mean moon when it is diminished
by the number of minutes from the (same) ahargana
divided by 4929. o

-

Here the mean moon

__ ahargana x 600 + 4174 _ahargana . )
= —= "-16393—_-— revols. 1999 min.

As has been shown before (p. 5), the number of moon’s

‘revolutions in a Mahdyuga of 4320000 years or 1577917800 days, i8

57753336, Hence the mean mood in a given ahargana from the
beginning of the Kaliyuga,

_ aharganaX 57153386
- 1577917800

revols. ete.

Brahmagupta appears to reduce this process in the - following
way i —

ahargana % 600
- 1577917800 X 600
T 577153336
: ahargm_zaxBOO )
= ags00e0000 "
. 57753386

‘ah.arg'a.ua x 600

=, =———5715553 revols.

242952
1630357‘753336 N
* ahargana X 600 ' ahargana X 600 _(_thgr_gf} na x 600
= 16393 revols. ~ — {303 L6303 + 242062
' 57753836
revols,
¢‘1harga:r_m x 600 “ whargana x 485904 min.

$= Cags revols-~ T3805074675°5

’

0 tharguna .
‘th'.%%%fi}g- revols. — (—47‘)-2“%(.‘— mig,

Brabmagupta bas rejected the fraction ) in the denominator.



As to the additive quantity 417} it is obtained in this way :—
The ahargana from the beginning of the Kaliyuga till the end. of
587 of the Saka era,
=1375585,
and 1375565 x 600=16393 x 50347 + 629.

1375565 x 16393

1875565 min. _ 49:9 x 360 x 60

65 Is.
4929 16393 revoss

Again

2114
= 16393 revols. nearly.

Now 629—2114 =417} which shows the necessity for the additive

quantity, (Cf. Amarija’s commentary.)
Hlustration.—The ahargana found before is 72715. .°. the

mean moon
S

79715 x 600 + 417} 72715
= _—_1-6—3.93 revols. —“—‘—“4929 min.

=5 signs 17° 52/ 16/ —-14/ 45"
=5 signs 17° 87’ 317, which is the same as calculated before.

Prihiidaka makes a mistake in his caleulation, and doubts if the
stanza was really Brahmagupta’s, The rule however is quite correct
according to the accepted motion of the moon in the Khanda-
khadyaka. /

The next two stanzas teach the method of finding the mean sun
and the mean moon from the processes of finding the ahargana.

11-12. Divide the remainder in the finding of omitted
lunar days by 692, call the quotient taken as days, etc.,
the first; add it to the remainder in finding the intercalary
months : multiply the result by 30 and divide by 1006 and
call this new quotient, the second. Take the sum of

the months (synodic months taken as signs), the days.
i.e., tithis (taken as degrees) and the first found before.

Put it down in two places, multiply it in the second place
by 13. Subtract from each place, the second—the two
(new) remainders are respectively the mean sun and the
mean moon in signs, etc.

-

Hllugtration.—The remainder in finding the omitted funar
days =402 da. 56/ 46" and that in finding the intercalary months
=438 da. 29' 13". R

402 da. 56/ 46"

Here the first = 003

=0 da. 34! 56"

(483 da. 29’ 13" +0 da. 34’ 56")30
1006

the second=

= 12 da. 56’ 40",

Sum of synodic months and tithis from the light-half of Cuitra

=1 sign 11°.

The sum and the first=1 sign 11°+ firs!
) =1 sign 11° 34/ 56/,

1 sign 11° 34’ 56/

1 sign 11° 84/ 56" |
18

12° 567 40" B

0 sign 28° 38/ 16/ 6 signs 0° 34/ O7
I The second 12° 56/ 407

Mean moon = 5 signs 17° 38/ 28"

The second
Mesan sun =

These rules are only approximative. The rationale also is not
clear but is connected with the relation between the units—solar
months and solar days on the one hand and the units—lunar
moanths (i.¢., synodic months) and tithis, on the other.

13. The longitude of the sun’s apogee is 80°; of the
moon, from the ahargana from which 453% has been
subtracted and divided by 3232, is obtained in revolutions,
etc., the apogee when increased by the minutes of arc from
the same ahargana divided by 39208.

The longitude of the sun’s apogee is thus stated to be 80°.
[Ct. Paitca-siddhantika, ix, 7-8]. The moon’s apogee is given by
the equation : —

(aharguna—4523

s rov. + ahargana

730298

Moon’s apogee = min,

—453% is a Kgepa quantity and we leave it out for the present.
In a Mahdyuga the total number of civil days=1577917800.



.*. the number of revolutions of the moon’s apogee in 8 Mahiayuga

1577917800 L5779178C0
= —3939 vols.+-—-———-—-—39298 min.

1753249
= 4882[73,32 revols. + 9403152 revols,

= (488217141 +1°839) revols.
= 488219 revols.*

Thus according to the Khandakhddyaka, the revolutions of the
‘moon’s apogee in & Mahdyuga is taken at 488219, the same as in
the Aryablatiya and the Sirya-siddhdnta of the Paiica-siddhantika.

As to the Ksepa quantity, it is obtained as follows : —

The ahargana from the beginning of the Kaliyuga till the
beginning of the epoch of the Khandakhadyake=1375565. Again

" according to Aryabhata (the Aryabhatiya, Daéagmka . 5) 4593
Mahiyugas elapsed since the ‘creation,” on the first day of the
Kaliyuga. Hence the longitude of the apogee on that day -

= } x 488219 = 488219—122054}
= 3066154)} revols.
= 1} revol., omitting the entire revolutions.

1 ds t 1577917800 304479450
} revolution corresponds to 188219%4 — 188219

= 808 civil days nearly.

. the ahargana for the calculation of the moon’s apogee at the
epoch of the Khandakhadyaka, should be taken—1375565+808
=13763738.

. Now 1376373 = 3232 x 425 + 2773.
' Again from the «hargana 1875585, the minutes of the arc

_ 1875865 _ 5985
= 50208 =Tgogg revuls.

In place of the numerator 5°235.~, Brahmagupta takes 525 or
51. This 5} added to the remainder 2773 becomes 2778}; now this
subtracted from the first divisor 3232 yields 453} as the subtractive
Ksepa of the stanza,

* Cf. the Aryablatiye, Daéagmkd, 4; Paiica-siddhantika, 1x, 3; also the editor’s
paper Aryabhata, p. 88. .

Hlustration,—Let the ahargm_ta be, as before, 7 "71.)

72715 —-454 + 72 5 .
.The moon’s apogee = (—‘—3232' l)‘ rev. + 59299 ™I

22 revols 4 signs 8° 54' 5"+ 1 517
4 s:gns 8° 35' 50/ omitting the complete
revolutions. :

From this 5 are to be subtracted according to the stanzéijf;_ thus
the longitude of the moon’s apogee at the required time=4 signs
8° 55/ 51/,

14. * Deduct 372 from the ahargana” and divide it by
6795, the quotient is in revolutions, etc.; add to it the
number of degrees obtained by dividing the ahargana by
5146506; 4his last result deducted from the whole circle is
the longitude of the moon’s ascending node.

From this rule the node’s negative longitdde

ahauana

ahargana—372
—révols. ’14656 degrecs.

= 6795

Now in a Mahdyuga the number of civil days=1577917800

*, the revolution (retrograde) of the node in'a Mahdyuga

_ 1577917800 revols. + 1577917800

= —B’Z—T5—_ ; . W degrees,

leaving out the Ksepa quantity 372.
= 232217'542 revols. 48519 tevols
.= 232226°061 revolutions. _
Hence according to the Khandakhddyaka, the number of the
re‘rograde revolutions of the moon’'s node is 232226.* Brabhma-
gupta’s rule is not difficult to deduce from this number of
revolutions.
In } of & Mahdyuga, the motion of the moon’s node
= 3 x 282726 revols,
= 1741693 revols.

- % CF, Aryabhati ga, Dadagitika 4 ; Paica-siddhantika, Tutroduction, xviii ; edxtors
paper Aryabhata, p. 38, .



re . 1577917800 . .
Now half a revolution= 553398 X 2 civil days

= 97_0%—&— civil days

: = 8307 civil days appxly.

Again the ahargana till the epoch of the Khandakhddyaka is

1375505. In the case of the moon’s node for the calculation of the
I.(sepn the ahargana should be taken at 1375505 + 8397 or 138982

=8795 x 202 + 6372. o
Hence from the 1st term of the rule the additive is 6372.

Again from the ahargana 1375565 by the s?cond tarm we get

1375565 x 6795
511650 x 360

6795 ‘

Here instead of 50°4488, Brahmagupta takes' 51. ‘ Now 51 +6?-72

=04923 and the 1st divisor 6795 —6428=3872 which is the negative

504488 i
revols. = 8795 revals.

additive here. |
Hllustration.—X.et the ahargana be 72715 as before ; hence the

negative longitude of the moon’s ascending node,
72715372 + 72715

= Teros O 514656

= 10 rev. 7 signs 22° 44/ 30/ +0° &/ 28/ -

= 7 signs 22° 59/ 58", omitting the complete revolutions. '
- . . o ,

. the longitude of the moon’s ascending node=4 signs 7° T/ 2V,

degrees

From this longitude 10" according to the stanza 6, and 93/ also
according to Prthiidaka and his school, must be s'ubbractefi. Th(llxs
according to Prthadaka the longitude of the moon's ascending node

t the time, )
) g = 4 signs 5° 30’ 52",

Thus from the ahargana 72715, Prthiidaka calculates:—

3 /!
The mean longitude of the sun=0 sign 28° 88,’ 16",
moon =5 signs 17° 87 31"

......
..........................
.

.moon’s apogee =4 signs 8° 55/ 56/,
........... moon’s asc. node=4 signs 5° 30/ 52",

..................

These are the mean longitudés on Friday midnight at Ujjayini.

Tt the longitudes are needed fora partioular time and place, the

hY

necessary corrections for time and longitude must be made. 'I'pese
can not be effected without finding the daily motions.. Prthadaka,
then taking the ahargana to be 1, cajculates by the foregoing rules,
the mean daily motions of the sun, etc., to be as follows : —

Moon’s | Moon’s nodes .
Sun Moon apogee’ | (retrograde)
59/ 790/ o 3
8/t 341 401 1

For details of his cslculation see the Sanskrit commentary,

Prthidaka then says that by subtracting the entire mean motion
from the mean longitude, the planet is got for the previous midaight
—now by interpolating for the half night and the precading day,
the planet is obtained for the sunrise, etc. He then speaks of
the corrections for the longitude of the staticn and says that the
(meridian) line passing through Lanka and the north pole is the line
for which the longitudes are found from the rules. He quotes a
stanza current among the Paulisa school of astronomers, which may
be thus translated. ‘‘On the ecities, Ujjayini (Ojein), Rohitaka
(Rohtak), Kuruksetra, the Himalayas and the poles no correction
for difference of longitude is to be made as these places are on the
(prime) meridian.”” Prthadaka most solemnly asserts that the
above stanza could not have been composed by Pulifa. While
residing at Kuruksetra, he found that the difference of longitude
from Ujjayini was 1} ghatikas, E, i.e., 836 min. E,—an impossible
result, which he obtained by the method of a celestial signal, viz.,
the difference in the beginning of a lunar eclipse, as calculated and as
observed. He never suspected the possibility of the following pit-
falls—(i) that his calculation and his data for it might be wrong ;
(i) that there might be errors of observation. A sannydsin, as he
was, he might check his result by the rougher method of Brahma-
sphuta-siddhanta (i, 86-38) or of the Panca-siddhantika (iii, 13-14).
In the latter work he might have seen it stated that the difference
in longitude of DBenares from Ujjayini was 1 ghatika 40 palas.

_One .might think Prthidaka to be of sufficient mathematical

acumen to be able to devise the method of Bhaskara in his Gola,
3

.
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Prasnadhyaya, 28. Prthiadaka, however, sticks to his result 1}

ghatikds as the difference of longitude between Kuruksetra and
Ujjayini. This difference of longitude as used by the Khandakhddyaka -
is taken to be equal to the length of the equator corresponding to
the difference in time. The length of the equator is taken at 4800°
1% x 4800 -

0—'—.

yojanas, Henze the difference in longitude at Kuruksetra=

=120 yojanas, according to Prthidaks Swami.

15. Multiply the difference in longitude (from Ujjayini),

by the (mean) daily motion of a planet (in minutes) and
minutes

negatively in places east of the meridian line of Ujjayini -

divide by 4800 ;- apply the quotient taken as

and positively in places lying west.

As explained before, the difference in longitude is measured in ‘

the Khandakhddyaka in yojanas, At Kuruksetra where Prthidaka
was staying at the time of writing the commentary, this difference
in longitude as taken by him = 120 yojanas E.

Now the sun’s mean motion = 5% 8/,

Correction for difference in longitude

_ 59/ 87x120

- 4800

= 1’ 28"

The sun’s longitude as found before = 0 sign 28° 38/ 16,
.*. the sun’s longitude for the midnight at Kuruksetra
' = 0 sign 28° 30’ 48"

Prthiidaka then states the mean motiong thus:—

C e

and then gives the following corrections for the difference in longitude

at Kuruksetra:— “

.1 Moon’s | Moon's Mars

San | Moon apogee | asc. node Mercury | Jupiter | Venus | Saturn

|
v |w| o | o o 6" o ¥ o

28" 45” 10" 4!! 47 ” 8” 7 " 24” I

3 4

In the next stanza, Brahmagupta gives the sua’s equations at
intervals of 15°.

16. 85, 67, 95, 116’, 129, 134’ are the sun’s

" equations for every half sign (of mean anomaly).

Here the sun’s maximum equation of the centre &g 134/. It P
stand for the circumference of the sua’s epicycle of apsis, then

P° x 8438/

- T = /
360° 184

P=14° -

Now taking P=14° and the formula for the sun’s equation to be

P° x 8438/ x sin (mean anomaly)

36 0°
!
= 1887 sin (mean anomaly).
10
The calculated equations may be tabulated as follows : —
Mean anomaly ... 0* ‘| 15° |- 30° ‘ 45° 60° 75" ‘ 90°
| ) .

Equations ] | 84’9 I 66’8 } 94"8 1168 | 129 t 1387

Yoo Moon's {. Moon’
Sun Moon | Mars Mercury:‘ Jupiter | Venus SaturnT apoge: alc?(:;d‘e
- —_! . ——
59 | 790 | 8U s’ | 4 96’ » | e ¥
8” 3_1” 261! 3 " ‘ 59" 7” Oll - 40N IU'

"Hence the equations are in fair ngreement with those given by
Bm{m'q agupta, and the circumference of the sun’s epicycle is 1&°
accol;ding to Khandakhdadyaka.

_"!_tiustralzon,-—'l‘he sun’s mean longitude ab Kuruksetra is 0 sign
28538/ 48", and the sun’s apoges is at 80° or 2 signs 20°.

‘x‘-N‘bw mean anomaly
= Mean sun — long. of apogee,
0 sign 28° 36' 48" — 2 signs 20°,
= 10 signs 8% 8% 48/ which is greater than 270°,
: N\

il
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Hence the equation must be found from 12 signs — 10 signs 8° 36/
48" or 1 sign 21° 23/ 12" or 8083/-2. Now 3083/'2=0900' x 3+3883"°2,
hence as the equations are tabulated at intervals of 15° or 900/, the
required equation lies between the 3rd and the 4th figures or between
95' and 116/. Here the difference for 900/ =21,

21'x 883-2

400

= 05/+8 66/
_ = 1°43' 567",

Here as the mean anomaly is greater than 6 signs or 180°, the

equation is positive.

.". the reqd. equation = 95'+

.. the sun’s apparent longitude
= () sign 28° 3t 48" +1° 43/ 56"
= 1 sign 0° 20/ 44/,

The next stanza gives the moon’s equations.

17. The moon's (corresponding equations) are 77,
148', 209, 256°, 286", 296". The (mean) planet diminished
by the apogee is the Kendra or the mean anomaly.

Here the moon’s equation of apsis for 90° e mesn anomaly is
stated to be 20¢'. If P, be the circumference in degrees of the
moon’s epicycle of apsis, then

P, x 3438/
L1 9298 9941
360 2
296
P, = 2 360°=31° ly.
1 3438x 0°=31° nearly
By taking 31° to bé the circumference of the epicycle of apsis of

the moon, the corresponding equations are as follows :—

'3

Degrees of anomaly... | 0° 15° ‘ 30° 45° 60° 75° ‘ 90°

Equations

i
o l 766 | 148 ’ 209’3 | 25687 285"46,296"05

Thus according to the Khandakhddyaka, the periphery of the
mqon’s epicyele of apsis is 31°.* '

* Cf. Pafica-siddhantika, ix, 7-8; the editor’s paper Aryabhata, p. 89,

N

Hllustration.—The nacon’s meun longitude at Kuruksetra. Z(
= 5 signs 17° 17/ 46" B
The long. of apogee = 4 signs 8° 35/ 40/,
.*. the mean anomaly = 1 sign 8° 22 0,
= 2302" = 900 x 2+ 502’
Thus the equation lies between 148/ and 209'.
Now the difference for 900/ or 15° =061/

61’ x 502

. H -— 4
.. the ?quahon = 148'+ 300

= 148/ 4347 1172239 2/ 1V,
Here as the mean anomaly is less than 180°, the equation is to be
applied negatively: '
.. the moon’s apparent longitude
= 5 signs 17° 17" 46"—38° 2 1/
= 5 signs 14° 15 45,

" To this is applied the Bhujdantara correction as explained in the
next stanza. In the case of the moon it is v%th of the sun’s equation
and in this particular case it is ! of 108/ 56/ =3’ 55/. This is
applied positively to the moon as the equation is done in the case
of the sun. :

Thus the moon’s apparent longitude is taken
= 5 signs 14° 19/ 407,
The next stanza teaches where the equation is positive or
negative and the application of ¥ of sun’s equation to the mooa.

18. In odd quadrants from the arc passed over and in
even quadrants from the arc to be passed over, is obtained
the corresponding equation, which is applied negatively or
positively according as the mean anomaly is less or greater
than six signs or 180°. Of the moon the further equation
is 37 of the sun’s equation (applied negatively or positively
in accordance with the sun’s mean anomaly). o '

A full explanation of the rationale of the above three

stanzas calls- for & regulge, exposition of the epicyclic astronomy,
which we mean to,do in'the appendix. The Sanskrit texts are the



following : —(i) dryabhatiya, Kalakriya, 17-22 , (&5} Brahmasphuia- .

siddhants, Gola, 24-30; (/i) Bhaskara's Goladhyaya, Sphuta-gati-

vdgand, 7, 10-37. The references in English are the following:—

({) Burgess’s translation of the Sirya-siddhanta, 1, 84-46; (i1) Tran-

slation of the Siddhdnta-éiromapi by Wilkinson and Bipudev
Sastri ; (iii) the present editor’'s translation of the Aryabhafiya, .

Calcutta University Journal of the Deparlment of Letters, Vol. XVI,

pp. 85-39; also his Papers on Hindu Mathematics and Astronomy, -

pp. 27-45.

This (18th) stanza says that the equation of the centre is
negative from apogee to periges and that it is positive from perigee to

‘apogee. The direction for working out the equation for a given value

.of mean anomaly is evident; as the equation is a sine function, it is
to be obtained like a sine function. As to the ,,‘Ttlk of the sun's

equation to be applied to the moon, it is obtained as follows:—

At the end of the mean ahargana or 72715 civil days, the mean sun
on the ecliptic is supposed to be at its lower transit: the apparent
sun is ahead (or behind) it by the sun’s equation of the centre. The
time taken by the celestial sphere to turn through the sun’s equation
of the centre

__ Sun’s equation expressed in minutes da.
- 216007

The moon’s motion in this fraction of a day

Sun’s equation X 7907 34 1 , .
= 316007 =53 of the sun’s equation,

This is to be applicd according to the value of the sun’s mean
- anomaly. The next stanza teaches us how to rectify the mean daily
motions ¢f the sun and the moon.

19.  Divide by 15, the tabular difference of the sun’s
equations, which corresponds to the mean anomaly, and
divide by 8 the moon’s tabular difference multiplied by 7;
the results are to be applied to their mean motions,
negatively, positively, positively and negatively in the four
quadrants of the mean anomaly.

Sun's equations e i 0 l ' | 67 | 95" | 116’ | 129 I134'

. 9 Py 1 Y o o
Correctiona to mean molion ... 20" g | 62" | 24" |2 | 20"

Tab. diff. of equations . 88 |32' “ag’ | a1 1y | & j

The rationale appears to be this:—

Tho sun’s longitude, !, after ¢ days from a given date is given by
[=nt~E, where n stands for the sun’s mean motion and E, the
equation of the centre; after one day the longitude will be given by

lf=(t+1)n—@+increase'\ for an increase of n in the mean

anomaly),
Tab. diff. of equationsxn
or ' = n{t+1)~(E+ 500
- Tab. dlff of equationgXn
daily motion = n-—--" 500

60
Roughly n=060' in the case of the sun, and 900 = s which explains

the division by 15 in the cose of the sun’s tabular differences of
equations,

In the case of the moon, the equation giving the longitude is,
"l=nt—E, where n is the moon’s mean daily motion in minntes;
ek ba the motion of the moon's apogee, then the increase of the
g mem annmaly per day is (n—n'). After one day the longitude I

s _wﬂl be given by

' l’::u(t-b 1) {E+mcrease of B for (n —n') increase of mean anomaly};

\’:’ N ,,.»

(n ~n'y Tab. diff. of Equations

when n and ' are expressed in minutes.

Daily motion=Il'—! ’
(n—n') Tab. diff. of Eqns.
=n— 900

In bhe case of the mpon n=T90 841, n'=0 40" ;
. n—n'=789 547 =783"9



889 671 _
1000~

.Now 900 =

The convergents are

7
Brahmagupta uses the convergent g Which explaing the multi-

plier 7 and divisor 8,

1)

1
I+

6
7 8

Lot 11
6+ 1+ 3+ 32

ete..
~

Moon's equations {7 148’ 209’ : 256’ l 286’ ' 206’

Tabuler difference . ’ 7 T 61’ ] 47’ l] 3¢ ll 10
Correctjons to ’ 6;1' 297 | g2 7 53’ 9227 "4 . mar i\ opr 1xit . o gam

moon’s mean motion ... | L | 26" 1A | 8 45

Brahmagupta is not quite satisfied with the "above rough rule,
and in the next gives his complete rule.

20. wtultiply the motion in anomaly by the tabular
difference of equations (at the mean anomaly), and divide
by 900 ; the results are the corrections for the sun and
the: moon’s daily motions. In case of Venus, etec., follow
the same rule and as stated before, i.e., apply the results
to the respective mean motions, negatively, positively,
positively and negatively.

The rationale of this stanza has already been explained. In the
increasing state of the equations, the corrections to the mean
motions have the same sign as the equations, and in the decreasing
state the opposite sign. The equations increase in the frst
quadrant, decrease in the second, increase in the third and decrease
in the fourth. Hence the corrections are —, +, +, and - in the
four quadrants of the mean snomaly.

By the rules of the stanza. the corrections to the mean motions

become : — ‘ /
To sun’s mean moticn .| 2’ 18" | 2 ¢” ’ 1 50" ‘ 1’ 29" @ I o 20"
To moon’s mean motion ...} 67°9" | 61’ 55" | 53’ 12" ’ 407 69" | 26’ 10" | &’ 48"

vitaal fute L

The sun’s longitude as found before= 1 gign 0° 20’ 44",

The moon’s longitude = & signs 14° 19’ 40",

The sun’s mean anomaly = 10 signs 8° 36’ 48",
Tabular difference of equations= 21',

- the correction to the sun’s mean motion = 1’ 22r, .

-. the sun’s rectified daily motion = 59’ 8/—1' 29" =57" 46",
The mcon's mean anomaly = 1 sign 8° 22;

:. Tabular difference of equations= 61,

the moon’s rectified daily motion= 790' 34" - 58' 12'="T87' 24"

_ Prthadakas wanted to .illustrate the finding of maksatra. tithi,
karar;a. eto., from the longitudes of the sun and the moon. .For
this i)urpose it is necessary to find the length of the day oad mg}fb;
this leads to the finding of ascensional difference or half the varia-
.tion of the day from 30 ghatikas or 12 hours. These topics aro .gl.ven
in the section called Tripradnadhikara (i.e.. finding the meridian,
latitude, and local time at the place of the observer). But as they
are nedessary in this connection, they are here considered by Prthii-
- daks and we also follow him. The ascensional differences are first

considered.

- 91. 159 divided by 16, 65 divided by 8, 10 divided by
3, each multiplied by the equinoctial shadow are (t]:'le
tabular differences of) ascensional difference expressed in

binadis.

The formula in the siddhantas for the ‘sine’ of the ascensional
diﬁerenée is given ag—R sin (ascensional difference)
R sin 3 x Equinoctisl shadow . R _ where 8 is the
= 12 R cosd ‘
sun’s declination, and the equinoctial shadow=12 tan ¢, ¢ being the
latitude of the station.*

tan 8x R

* Or, R Sin (ascensional difference) = 5 x Tquinoctial shadow,

where R=3438/, the measure of the radian according to Aryabhata.
1t the obliquity of the ecliptic be 24°, the value of & for the longitude
of the sun 30°, is Sin~ (sin 30° xsin 24°); for longitude 60°, it
is sin~*(sin 60° ¥ sin 24°); for longitude 90°, it is 24°.

* Cf, Brahmasphuta-siddhanta, i, 67-68 ; Surya-siddhanta, ii. 61 ; ete,
4
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~ Now 8, =sin"!(sin 30° X sin 24°)=11° 44’ 27,
'8, =sin~"(sin 60° xsin 24°)=20° 37’ 43/,

-5, =94°,
. 4an 3, X388 gr.508 = 99508 4inagiras
12 S 6 :
158688 . ..
= binddikas
= if—é)— binadikas appr&ximnte]y.

Now i?ﬂi’%ﬁi@': 107'-8516.

tan 5, X 3438  tan 3, x 3438/
112 12

= 107"-8516—59'-5080

bin

.= 48/-3436 = 48:2430
; 6
= _6_4_.48_5§_1. binadikas.

T o= %?- binddis according to Brahmagupta.

- Again K002 1971558 and

1‘) 7064

127’ 558 -107""8516=19" 70&4— 5

9-8532

= binddis = 130 according to Brahmagupta.

These ﬁoures of Bmhmnguptu viz., 15q ‘85 %). are comparai)lc

with 10, 8, and 3} of Bhaskara. Grahaga)_uta, Spagtadhikara, 50-51,
The Paiica siddhantika figures are 10 825, 3'375, ii. 10-12,

[} r'l.u's.u,n n
-'I'he tabular differences are.thus:
169
16
65 .
5 X Equmochal shadow,

X Equmoctml shadow,

173(') X Eéhiﬁéetial_ shadow.

Aocordmg to Prthadaks ab Kurukgetra the equinoctial shadow
= 7. At that place the tabular differences of the ascensional

differences are,

159X 7 _ 1118 _ noone 1o m e
6 = = 6957 bindadis,

85XT _ 455 _ noo . o
5 = § = = 56°'87 binadis
A0XT 70 _ oniaa miasds

g =3 = 23°33 binadis,

Prthiidaks takes these to be 69, 57, and 23. The san’s longi-
tude as found before=1 sign 0° 20’ 44”. As one sign is passed over
by the sun, the ascensional difference o

=(co+ 5;3‘0%1 ) bind_(_lis_—.( 69 +l@ ) binadis,
= 69 binddis approximately
=1 ghatikd 9 binadis. _
.-, halt the day =16 ghatikds 9 binddis
Hulf the night =13 ghatikds 51 binadis

|

22. Multlply the dally motion in minutes by the
ascensional difference and divide by 3600 (i.e., number of
binadikdas in a whole day), s:.wract the result from the
planet for sunrise and add it to the planet for sunset when
the sun is in the northern hemisphere; do the reverse when
the sun is in the southern hemisphere.

TIn the Khandakhddyaka, the plauets calculated, are for the
apparent midnight; the planets for the sunrise are first obtaincd
by subtracting }th of the daily motirn from the midnight longitude,
and planets for sumset by subtracting }th of the daily motion from



Tongitude. The longitudes for sunrise and sunset are
time when the sun is on the 8 o’clock circle, either in the

7%

make the longitudes true for the apparent sunrise. No illustration
is necessary.

23. Tifteen, respectively diminished and increased by =
the ascensional difference when the sun is in the northern
hemisphere, and respectively increased and decreased when -

the sun is in the southern hemisphere, doubled will give the
lengths of the night and the day in ghatikas.

As found before, half the night = 13 ghatikds 51 binddis.
= 27 ghatikas 42 binddis.
= 16 ghatikas 9 bin(i(lis.
= 82 ghatikas 18 binddis.

The next stanza teaches how to find the naksatra on any day.

.". the whole night
Half the day
‘. the whole day

24. If of any planet the longitude in minuntes be
divided by 800, the quotient gives the naksatra passed over
from Aswini; of the current naksatra, the portions elapsed
and to De passed over divided by the daily motion give

the days, and then the remainder multiplied by 60 and -
divided as before gives the ghafikas, respectively elapsed and

to be passed over, of the current naksatra.

A naksatra = % of the whole circle

360 x 60/

=800/ .
57 00’ of the n}rc

[Ulustration.—The longitude of the moon as found before ,

= 5 signs 14° 10/ 40 and the moon’s daily motion = 737/ 227,

Now 5 signs 14° 19 407 = 9859’ 407, o
and 9859/ 40" = 800’ x 12+ 259’ 407",

Hence 12 nakgatras have been passed over at the midnight of the -
day and of the 13th naksatra 259/ 40/ have also been passed over, !

Now 800’ — 259" 40" =540' 20",

Thus 540’ 20" are to be passed cver, of the current naksaira.

b orning or ia the evening. The corrections spoken of in this stanza ;

259 40" I o R _
. Now T % 60 gha{ikds=21 gha{ikas 8 binddis ‘ :2.;’
540! 20/ x 60 . b Ler s .
and ’7971_@_;7'_ ghatikas = 48 ghatikds 58 binddis.

Now the length of the day + half the night
= 82 gh. 18 bin. + 13 gh. 51 bin. = 46 ghatikas 9 binadis
.*. the time elapsed since the previous-sunrise when the current
naksatra began = 46 gh. 9 bin. — 21 gh. 8 bin,
= 25 gh. 1 bin.
Again the {ime after the next sunrise up to which the current
nakgatra continues '
= 48 yh. 68 bin. — half the night
= 48 gh. 58 bin. — 13 gh. 51 bin.
= 30 gh. 7 bin.

95. The moon, diminished by the sun and réduced to
minutes and then .divided by 720, yields the number of
tithis passed over. From the parts elapsed and to be passed
over, multiplied by 60 and divided by the difference of the
daily motions of the moon and the sun, are obtained the
ghatikas elapsed and to be passed over, of the current tithi,

As defined before a tithi is a peculiar time unit in which the moon
gains 12° or 720¥ of longitude over the sun and there are 30 tithis
from conjunction to conjunction. As found before :—

The moon’s Jongitude = § signs 14° 19’ 407,

The sun's longitude = 1 gign 0° 20’ 44/,

The moon’s daily motion = 787 227,

The sun’s daily motion = 57/ 46/,

Moon—Sun = 4 gigns 18° 58/ 56''=8038/ 56/

= 720/ x 114116/ 567.

Hence at this time 11 tithis have passed ; of the 12th tithi

118 56/ have also passed and 601’ 4” yet remain.

The difference of daily motions = 679/ 36/.

118’ 56 x 60
879'36"

0 47 x 60
879/ 36"

\

Now = 10 gh. 380 bin.

= §2 gh. 57 bin.
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Hence the time elapsed since the preceding sunrise when th.e."
11th tithi ended = 46 gh. 9 bin.—10"yh. 30 bin. : e
= 35 gh. 89 bin, _ 3

Also the time after the next sunrise when the 12th tithi will. end;?f
. Y 1

= 52 gh. 57 bin.—13 gh. 51 bin. . B
= 89 yh. 6 bin. ‘ SEIPE Lo =

Karana=} . of »El

- Phe. next stanza speaks of the fixed karanas:
a tithi, -

2. The second half of the 14th tithi of the dark half 3
of the month is called $akuni karana; the first half of the
15th, catuspada karana, the second half is called ndga'y
karana and the first half of the first tithi of the light half s
called kingstughna. j?f

“After kingstughna, come’ the seven karanas, which are named -
Vava, Vilava, Kaulavae, Taitila, Gara, 'Vanij, and Visti. These! *
movable karanas or } tithis, make 8 complete cycles up to the first:
half of the 14th tithi of the dark half of the month, then we have:
the 4 fixed karanus as stated in this stanza. A kuarana represents.

the time in which the moon gains 6° of longitude over the sun..
‘’he next stanza gives the rule for finding the movable karanas. ’

97. Divide the moon diminished by the sun and .
veduced to minutes by 360, lessen the quotient by one and‘:';
divide by 7, from the remainder are (to be counted) the -
karanas beginning with vava. The rest (i.e., the remaining

processes) are like those of tithis.

e

Ta

Here, moon— sun =8088/ 56" =360"x 22+ 118' 56/ S

- the quotient here is 22, lessened by 1 and divided by 7 'yieldsz
0 or 7 as the remainder, hence the karana that is over is Vigti - The-#
current larana is vava, which will last till 16 gh. 52 bin. after:

midnight or till 3 y/. 1 bin. after the next sunrise.

4. When the sum of the sun and the moon is equal
to half a circle or the whole, it is respectively called
ciflitipata or vaidhyta : the days (whether elapsed or to come) -
are obtained from the: excess or defect of the sum (of the,‘::"

i

follow the same rule.

sun and the moon) from G signs or the whole. circle, divided >/

by 1Ehe sum of their daily motions. The pita whether
vﬁtzpdta or vaidhrta takes place when the sun and the
moon have the same declinations (numerically).

The process of finding the time when the sum of the longitudé}é
of the sun and the moon is equal to 180° or 360°, presents no-great
ditticulty, the rule is sufficiently clear. But to find the time when
they have numerically the same declinations is a matter involvin
somewhat tedious calculations, if the declinations of the sun ang
the moon are not daily found and tabulated. The rule for finding
the declinations is given by Brahmagupta in the Tripraén(irlhikm:z
but as it is necessary here, Prthudaks introduces it and we also
follow him, e T
Popime S e T
29 The declinations (for eacl; half sign) in minutes
are- 362, 703, 1002, 1238, 1388, 1440, increased or
decreased by the planet’s celestial latitude (according as

they bave the saine or opposite denominations).

- Taking 24° to be the obliquity of the ecliptic according to the
siddhantas the declinations at intervals of half a sign work o'u‘b
to be )

| 363/, 704/, 1003/, 1238/, 1388/, 1440/,
while 362, 703/, 1002/, 1238/, 1388/, 1440/,

.are Brahmagupta’s figures which show a slight discrepancy of 1/ ;'n
the .ﬁrst tlzree values. The spherical astronomy involved will be
considered in the Triprasnddhikara. The process of finding the

.declination of a planet having either a north or south celestial

latitude is rough. Brahmagupta and the modern Sirya-siddhinta
Bhaskara alone attempted to make it some-
vx{hat correct. Cf. Brahmasphuta-siddhanta, vii, 15 also x, 15; Sirya-
siddhanta, ii, 58; Bhaskara’s Grahaganita, (x’rahacchdy&dhik.dra' J3-
Lalla’s Sisyadhivrddhida, xi, 12. Y

- Next in calculating the moon’s celestial latitude, it is neceasary
to find the ‘sines’ of given arcs, hence a table of ‘sines’ is aleo
necessary which is also given in the Tripradndadhika i

; praénadhikira, -
takes that up here, % Fribidaks



30. Thirty increased severally by nine, six and one;

twenty-four, fifteen and five, are the tabular differences of -

‘sines’ at intervals of half a sign. [For any arc, the ‘sine’

is the sum of the parts passed over, increased by the propor- :

tional part of the tabular difference to be passed over.

The tabular differences of ‘¢ sines '’ are
89, 36, 81, 24, 15, 5.
- The *“ sines '’ are:
39, 75, 108, 180, 145, 150.
Here the radius of the circle is 150; hence the caleulated

‘sines’ are:—

38-82, 75, 139 061129 94*’ 144 89, 150.

Hence Brahmagupta’s :5’& in‘es ébutate to the’ néarest
integer. It is further neces ar"%tb”ﬁnd the moon 's celestial’ Tatltude'f

and the angular diameters of the §uh and Lﬂ)e ‘moon, for which we

have the lines in iv, 1-2 which are taken up here.

31. Trom the longitude of the moon, %subtract that of
the ascending node; of the resulting arc, the ‘sine’ multiplied
by 9 and divided by 5 gives the celestial latitude of the
moon. Multiply the apparent daily motions of the sun and
the moon respectively by 11 and 10, and divide respectively
by 20 and 247; the resulting minutes are the angular
diameters of the sun and the moon.

The first part says that the celestial latitude of the moon

_ 9x150 sin (arc between moon and node)
- 5

270 x 150 sin (arc between moon and node)
- 150 mm

The maximum celestial latitude of the moon is thus taken at
270’ a8 in all Indian Siddhdntas.

As to the second part, the idea is that all planets move with the
same linear speed in their eccentric circles. Hence if- the distance-
of a planet from the earth (in this case) be 7, and n be the dmly,'

motion, then r x n=constant, : i

/Ahada 2 ayaw o -

Thus if ¢ be mean distance and w be the mean daily motion and 33

r and n be these quantmes on any given day, we have rn=aw,
Seair=mnciwos
Again if D be the diameter of the planet in linea.r. measure, then
the angular dianéteter,

= % x 3438/,

U

. The mean angular diameter= - % x 8438/
apparent angular dismeter = _g; =7
mean angular dismeter ,T‘ w*

t"‘

Soin the cage of the sur, the apparenb angular diameter .

-«,r‘. j e ST
~ " mean angu lar diam. xn
w

=Hya;

20 ‘.

.~ 11_ mean angular diameter
20 59/ 8V

6507 281
20

the sun’s mean angular diameter = = 32' 31",

Similarly the moon’s mean angular diameter

_ 790 847x 10

= 3/
547 32/ nearly.

) The next stanza that is necessary here, is taken by Prthidaka,
from the Tripragnddhikdra ; it relates to the finding of the arc when
the ‘sine’ is known.

32. Subtract as many as possible of the tabular differ-
ences of the ‘sines’ from the given ‘sine’ ; multiply the
remainder by 900 and divide by the tabular difference
that cannot be subtracted; add the resulting  minutes to
900" multiplied by the number of tabular differences passed
over ; the final result will be the arc corresponding to the
given ‘sine.’

6
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The tabular differences of ‘sines’ are given at the intervals of 15°
or 900’. The rest requires no explanation. All the rules necessary
for a computation of a vyatipata or vaidhrta having been discussed,
Prthadaka illustrates it as follows :—

Tlustration.—Let the time be 786 Saka year, 1 synodic month
and 10 tithis ; then ahargana="72714, the mean sun as corrected
for Kuruksetra=0 sign 27° 37’ 40" ; the sun’s apogee = 2 signs 20°,
.. the sun's mean anomaly = 10 signs 7° 37/ 407, the sun’s equation
1° 45' 19 according to Brahmagupta’s table: hence the apparent sun
at midnight = 0 sign 29° 22 59" ; the sun’s daily motion, 57’ 46/

The moon’s mean longitude= 5 signs 4° 7' 127, the moon’s apogee
= 4 signs 8°49' 5/, .. the moon’s mean anomaly = 0 sign 25° 177" ;
hence the moon's equation = 2° 6" 397 the apparent moon
= 5 signs 2° 0/ 33/ ; the moon’s daily motion = 728/ 39".

Sun = O sign 29° 22/ 59" ;

Moon = 5 signs 2° 0' 33! .

Sum = 6 signs 1° 23/ 827 ; which is in excess of 6 signs
hy 1° 28’ 32/ or 83/ 22"

N 83! 82" _ 8832 days'

OW: “Sun’s daily motion+Moon’s daily motion 786" 25"

represent the time when sun + moon will be 6 signs or 180°,
. 1 391 7! 46/
correction to sun = gi'%g'%'j/_" = 6 8",
Uorrection to moon=83' 32/ —6/ 8/= T7' 24",
Longitude of the moon’s ascending node=4 signs 5° 27/ 46
1 320 x 3 11/ .

Correction to the node = 88 820 x3 117 . gqn,

786" 25"

.

Thus at the time when the sum of the longitudes of the sun an
the moon is 180°, the longitudes are :—

Of the sun= 0 sign 29° 16’ 51"
Of the moon= 5 signs 0° 43" Y/
Of the node= 4 signs 5° 28/ 6",

. 84/ 32/
These are the longitudes at T8 o5
preceding the midnight. At this time from the sun’s longitude
=0 sign 29° 16/ 51, his declination= 11° 28' 32=688" 32/,

da. or 6 ghatikds and 22 pal?

UL e

NOW: . K}
Moon = 5 signs 0° 43’ 9" ;
Moon's node = 4 gigns 5° 28' 6" ;
Moon ~node = 0 sign 25° 15" 3" ;

the moon’s celestial latitude= 115’ 13",

Hence by the rule of the Khandakhddyaka, the moon’s declina-
tion =688’ 32”4115’ 13" = 803’ 45", Hence the declinations are not
equal and the time found is not the time for vyatipita. The next
step is to subtract the moon’s celestial latibude from its declination
and to find the moon’s longitude for which the declination is equal
to the remainder of the subtraction.

Sun’s declination= 688/ 32" ;

Moon'’s celestial latitude = 115/457;
Difference = 572/ 47/,

Now 572/ 47" is the declination for the longitude 24° 348" or
5 signs 5° 56/ 12/,

Hence the longitude of the moon at which the moon’s declination
will be nearest to that of the sun= 5 signs 5° 50/ 12",

The moon at midnight = 5 signs 2° 0/ 33",
3° 55" 397,

Difference =

The moon'’s daily motion being 728’ 59, the corresponding time is
728/ 59/
motions of the sun and the node are respectively in these 19 gh.

44 palas=19', and V' 3/,

ghatikas = 19 gh. 44 palas, after midnight. 'The

Hance at this time, i.c., 19 gh. 44 palas after midnight, the
ngitudes of—

The sun = 0 sign 29° 41/ 59",
The moon = 5 signs 5° 56' 127,
and the node = 4 signs 5° 26/ 43/,
Now the sun’s declination = 11° 37/ 337,
The moon's " = 9° 407 417,

» 5 celestial latitude = 2° 17" 3/,



G~

Agsin, sun's declination — moon’s celestial latitude= 9° 20’ 80,

Taking 0° 20’ 80" to be the moon’s declination,
the moon’s longitude = 5 signs 6° 08’ 48",
The moon’s longitude at midnight= 5 signs 2° 0’ a8/
Difference = 4° 28/ 10"

the next approximation to the time of the vyatipdta is

go 280 107 4° 28/ 107 % 60
7ogragn 48¥S: e 7o 807 I

= 92 gh. 3 palas after midnight,

At that time the sun’s longitude = 0 sign 29° 44! 13",
IThe longitude of the node = 4 signs §° 26' 86".
The longitude of the moon = 5 signs 6° 28/ 43".
Now the sun’s declination = 11° 38' 21'1;

the moon’s declination = g° 20" 80";
and the moon’s celestial latitude = 9° 19/ 15",

Again, the sun’s declination —moon’s celestial latitude =9° 19/ 6":'5‘

taking this to be the moon’s declination,
the moon’s longitude = 5 signs 6° 827 27",
The moon’s longitude at midpight = & signs 2° 0 33",

difference = 4° 81/ 54'1 ;

the final approximation to the vyatipdta is

4° 31/ 64" x 60
728/ 39"

ghatikas or 22 gh. 23 palas after midnpight.

0 sign 29° 44/ 32",
4 signs 6° 20/ 85" ;
" 5 signs 6° 82/ 27" ;
11° 88/ 28" ;

g° 19! 6% ~

At that time the sun’s longitude =
the longitude of the moon’s node =
the longitude of the moon =
the sun’s declination =
the moon’s declination =
the moon's celestial latitude = 90 19/ 27" ;
_: the moon’s true declination = 11° 88’ 88",
Now the declination of the moon may be practically taken eq
%o that of the sun. The time in which this equality or vyatipaa
takes place is 22 gh. 23 palas after midnight. The length of half
the night is 18 gh. 51 palas. Hence this vyatipita takes placelafter
8 gh. 32 palas after the next sunrise.

)

. 11
Now the diameter of the sun =55 X 5T 46/ = 81’ 46",

. 10
the diameter of the moon=g77 X 728! 39" = 29’ 30" ;

" s half .the sum of the semi-diameter=>30'38" ; this is gained by
: emoon in 2 gh. 44 palas. Therefore the wvyatipata begins at
gh. 48 palas and ends at 11 gh. 16 palas after the sunrise.

As to the duration of the vyalipata, Bhaskara says—

“ e favad); milara agT IEHREH |
AgAMY (EWHME IRIENTE ¥ 3¢ miwara’ ag qara; + 1

6., it is the middle of the pata, when the centres of the sun and
“the moon have the same declination ; the paia ends later on when
the foremost part of the sun’s disc and the hindmost part of th
z;xloo:il s disc have the same declination.”” Hence the calc.ulaﬁon oi
the duration of & pdta has the same natu
ature i
eclines as the ecalculation of an
'I'_his prao:tically finishes the first chapter of the Khandakhadyaka
Prthiudaka gives some additional rules which are detuiled. i)elow .

(i) The calculation of the duration of the sun’s passage f
one .sign of the zodiac to the next. The directions are (a) ﬁ:‘st If.ion;
the instant when the sun’s centre is at the junction of the two si . ;
(b) then multiply by 60, the sun’s semi-diameter, and divide ng:!sl’
sun’s apparent daily motion ; apply the quotient which is in ha);ikde
x'legatively and positively to the instant when the centre of tg,he ;s X
is at the junction of the two signs. Thus are obtained the inst m:.
of the sun’s transit from one sign of the zodiac to the next. In :ll: ©
same way find the durations of the end of nakgatras or of tithis. ’

(i) The next topic treated by Prthadskas, is to find the Lord
of the year, This rule is: add 819 to the ahargana as found from ;)1:
Khandakhadyaka, and divide by 860 ; multiplsf the quotient b ;
and increase the product by 8 ; divide the result by 7 ; the remainge(r
sounting from Bun in the week day order gives the Lord of the year.

INustration —Let the ahargana be 72675, then 72675+ 3819=
360 x 2024 274; again 202 x3+3=7x87+0. Here the remainder
15 0 or 7, hence Saturn is the Lord of the year of which 274 days

# Grehaganita, Patddhikara, 16-16, Comm,



have passed and will continue to be the Lord of the year for 86
days more.

(iii) To find the Lord of the month, add 19 to the Khanda-

khadyaka ahargana, and divide by 30 ; double the quotient and add 2 ;
now divide by 7 ; the remainder of this division gives the Lord
of the month from the Sun in the week day order.

Illustration :—Let the ahargana be 72675 as before ; increased
by ].9 it becomes 72694. Now 72694=30 x 2423 +4 . and 2423 x 242
=7 x60244. Thus Mercury is the Lord of the month,

(i) The Lord of the day is found from the ahargana. The Lord
of the hour is thus found: find the number of hours elapsed since
sunrise, multiply the number by 5, add 1 to the product, divide by
7. The remainder counted in the week day order, from the Lord®
of the day, gives the Lord of the hour.

Illustration.—1It is proposed to find the Lord of the sixth hour
of a Tuesday. )

The number of hours elapsed is 5 ; now 24 54+1=26=Tx3+5
hence Saturn is the Lord of the sixth hour of a Tuesday.

This finishes the first chapter of the Khandakhddyaka which
relates to Lhe finding of tithis, naksatras, etc.

CHAPTER II _
On the Mean and True Places of “Star’ Planets.

1. Deduct from the ahargana 496 —%, and .divide by
687 ; the result is the mean Mars in revolutions, etc. ; again
divide the ahargana by 174259, add the quotient taken as
minutes to the revolutions, etc., obtained.before.

Y

(ahargana —496+1) revols. + ahargana .

687 174259
Now in a Mahdyuga, the number of civil days=1577917800 ;

.%, the number of Mars’ revolutions in a Mahdyuga

1577917800 1577917800 rev
687 174259 x 60 x 360

399 |, 292207

= { 2206828+ -+ —"_~
( 2968 3-*-687 +697036
= (2296823 580786+ - 419214) revolutions
= 2296824 revolutions.

Thus according to the Khandaklhdadyaka, the number of Mars’
revolutions in a Mahdyuga is taken at 229682%. '

-The mean Mars, therefore

Thus mean Mars=

rev,+

revolutions

__ ahargana x 2296824 revols
1577917800 o
ahargana
- revols,
687288 )
2296824
— { ahargana + ahargana__ __ ahargana
687 6 _ 288 687 )}revols. ,
87 - 2300891
__ ahargana +al 1 .
T rev. +ahargane x gem——paoaor min.

288 x2x2



_ ahargana ahargana .
587 rev.+ T7ag59— 152 in.
’ 1152
=_ah%r§g’;7a_n_(_t_ rev.+ %a min., rejecting the fraction f11—5522 oo

in the denominator.
Again the ahargana till the beginning of the Khandakhadyaka
epoch= 1375565 =687 x 2002 4 191.

. 1375565 revols.
Again 17155560 x 360

1375565 x 687
_ 174250 x 60 x 360 _ 25 .
= 587 ga7 ety

.~. 191'25 is the positive additive, Hence the negative Kgepa
=687—190125=496—

The true value of the numerator of the fractiou;(?—:? is *25105.

Hence the excess of Mars’ revolution left out= '0%18975 revols.

=19 89, for which Brahmagupta directs the addition of 27 to the
calculated mean longitude of Mars, Ch. I, st. 7.

Illustrations.—(i) Take 1 for the ahargana, then the daily motion

1 1 .
of Mars= 857 rev. + 174359 min.

= 31/ 26140/ =31' 26",
(ii) Let the time be Saka year elapsed 786. The ahargana is 72675

. _ (72675—496+1) 72675 .
S tl.xe mean Mars= 87 rev.+174259 min,

_72179°25 79675 .
= — 687 rev.+1,74259 min.

= 105 rev. 0 sign 23° 11’ 16" +25"
= 0 sign 23° 11’ 41",
To this must be added 2” according to stanza 7 of Chapter I,

*. the mean Mars at the midunight of Lanka, at the end of 786_

of Saka year=0 sign 23° 11’ 431,

.VA-u-ln. [FUTUIN 'S \ g1

2. Multiply the ahargana by 100 and lessen the -
product by 2181 and divide it by 8797 ; the quotient is the
Sighra of Mercury in revolutidns. * Increase the .result
by the minutes of arc obtained from the ahargana divided

“by 71404,
-Here the Sighra of Mercury
_ ahafgazza x 100 —-2181 ‘ahargana .
8797 rev. + —Tio4 in.

~ The number of civil days in a Mahayuga is 1577917800 ; hence
the number of revolutions of Mercury in a Mahdayuga

® _ 1577917800 x 100 1577917800
= 5757 rev.+ H1d0d

= (1793699897694 1°0281) rev,,
= 17937000 rev.

Thus the number of revolutions of Mercury in a Mahdyuga, as
accepted in the Khandakhddyala is 17937000.

*. the longitude of the Sighra of Mercury

__ ahargana x 100

__ ahargana x 17937000
= T1577017800 ™V

1577917800

179370

- ahérgana x 100 rev. + ahargana x 100 - ahargana x 100 rev.
8797 8797 — 9 8797

17937
_ ahargana x 100 ahargana mi
= %7 "7 g7 o007 min-

360000
_ aharg;gf;x 100 rev. + aharqan‘)a
71404 5= 55

= ohargonax100 .  ehargana o rejecting the fraction —

25
This proves Brahma-

8797 V¥ 404
in the denominator of the second term.

gupta’s rule,

6
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Again the ahargana till the beginning of the Khandakhadyaka
epoch=1375565, : :
and 187556500= 8797 x 15636 + 6608

__ 1875565 x 8797
T 71404 x 21600

8797

1375565

Pstwibhaunty ev.
° 71404 e

Als

= 784584 ¢
8797

.*. the positive additive= 6608784584
= 06615 84584,
.". the negative kscpa = 2181-15416, this is taken at 2181 and

15416

8797
In its place Brahmagupta directs the subtraction of 22/ seconds

from the longitude of Mercury, vide Ch. I, 7. '

rev.= 92/7:716 seconds.

the error is

Illustration : —{a) Let the ahargana be 72675.

! _7267300—-2181 72675
The mean Mettlzury = 557 rev.+ 1104
= 825 rev. 1 sign 28° 9/38"+1' 1"
= 1 sign 23° 10’ 34
From this 22" have to be subtracted.

Thus the mean Mercury = 1 sign 23° 10/ 12" at midnight at!

Lanka.
(b) To find the daily motion of Mercury.
. 21600x100 . .
It 18 = W m]n.‘*'m min.

= 4° 15 32/,

when diminished by the number of degrees obtained froor
the ahargana divided by 162621.

Here the mean longitude of Jupiter

_ahargana—2113+% = ahargane

1352 62631 desrees:

* 8. Deduct from the.ahargana 91.13—-3, and divide byfi
4332, the quotient in revolutions, ete., is the mean Jupiter,:

CHALTER 11 , 43

Hence the number of Jupiter’s revolutions in a Mahayuga

- 1577917800 rev. — 1677917800
4382 ) 162621

= 36424695290~ 2695284 rev.
= 364220-00006 rev.=36£320.

Thus according to the Khandakhadyaka, ‘the number of Jupiter’s
sidereal revolutions is accepted at 364220.

‘degrees.

Hence the mean longitude of Jupiter

— ahargana x 864220 Is
1577017800 o O
- __6hargana revol
4333+ 116760 O
364220

_ @hargana __ Yahargana _ ahargana

4333 1382 4339 +116760§ rev.

1 364224

__ @hargana ahargana
= = rev. — : degrees.

4332 162031~ 285 ©

1946

— ahargana _ ahargana

333 "% T Tg3car degrees, rejecting the small

fraction in the denominator.

Again the ahargana till the beginni i
7 ginning of the Khandakl
epoch= 1375565, hadyake

and 1375565: 4382 x 381742321,

. 1875565

_ 1375565 x 4332
Again 163631 degrees - ev

T 7102021 x 3607 4.5 22-
4830

= 101-78656
sz Y
Now 2321—101-78656 is the positive additive.

.". 4382—23214101-78656 or

2112-78656 is the negative kgepa: in its place Brahmagupta takes
2112-8 for the negative ksepa.
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Thus there remains a residue of

4332
mean longitude of Jupiter as determined by the rule.
" lustration :—(a) Let the ahargana be 72675,
Then the mean longitude of Jupiter

_ (26751 -2118) __ ahargana
=*—fas5 — V" Jeo6al degrees,

= 16 rev. 3 signs 13° 53’ 41/7—-0° 26’ 49"
= 3 sigus 13° 26’ 52", omitting the entire revolutions.

To this mean lon'gibude by adding 4, we get for the midnight at
Lanka, the mean longitude of Jupiter,
= 3 signs 13° 26/ 56/,

(b) To find the mean daily motion of Jupiter.

21600/ _ 60 x 60
4332 162621

= 4' 59"~ =4" 5.

It is="— seconds,

4." Deduct from the ahargana 372 and multiply by 10
and divide by 2247, the quotient in revolutions etc., is the
mean Venus-Sighra (heliocentric Venus) when increased by

the number of degrees from the ahargana lessened by 712 .

and divided by 77043.

The mean longitude of the Sighra of Venus is thus

- : -712
- (ahargana—873)10 l‘ev'_*_ahavgar_m 712

9947 : 77043 desrees.

Hende the number of the sidereal revolutions of Venus in &

1577917800 % 10 v +1677‘Jl7800

Mahayuga= 9247 "t 77043 % 360
= 7022331-10814 rev. + 5689167 rev.
= 702238799981 .
7022388 nearly.

il

Thus according to the Khandakhddyaka, the number of sxdereali

revolutions of Venus is taken at 7022388.

01344 of a revolution=47, Hence 4" are to be added to the -

COAAL Ly e
.

The longitude of the Sighra of Venus

__ ahargana X 7029388 .
= 1577017800 revolutions;,
- Gharganax10 . = _ ahargana x 10 . rev.
T 15779178000 ' 9947 127836
7022388.
ahargana x 10 1 1
= +al x10
Togay v T nergane (2247 To78s6  2247)"°""
7022388
ahargana x10 ahargana -
_— L) . + . 3 .
Py I T
127836
ahargana X 10 ahargana .
= S+ : ,
5547 rev 7043 degrees, npeglecting the small
fraction in the denominator which =-2504. This proves the rule

of Brahmagupta,

Again the ahargana till the beginning of the Khan(]uklgﬁdyaka

epoch=1875565.

Now 13765650 = 2247 x 6121 +1763.

13755650 degrees= 13755650 x 2247

Again 71043 77013 %300  '°
2947
111-44244
= —,
9247

The posxtlve addxtnve 17634+ 111-44244
= 1874-44244

. the negatlve additive= 2247 — 1874 44244
= 372-55756.
Again Brahmagupta 8 kqepa quantity

_873x10 712 ‘
= 51 ’rev.+ 77043degrees.

_ 8725 . -057586
= ggr7 vt o Y

— 872-557586

3947 revolutions, -
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37255756
. As calculated, the kgepa= 9947 rev-
) - 000026
» difference = 947 rev-

= +014/ secs. which is neglected.

Hlustration :—(a) TLet the ahargana be 72675 as before.

Then N __ (72676 ~37H10 72675 —712
Thtn the mean Venus's Sighre= 9247 rev.+ —mpos
degrees,

= 823 rev. 3 signs 5° 34’ 3" 4+0° 56' 2,
= 8 signs 6° 30/ 5/,
(b) 'To find the mean daily motion of the Sighra of Venus.

18 x 12060006

It is= 5547 ecs.= 1° 36/ 87+ 0",

= 1° 306/ 87,

5. Deduct from the ahargane 2491} and divide by
10766; the quotient in revolutions, ete., is the mean Saturn
when lessened by the minutes of arc obtained from the
ahargana divided by 80450.

The stanza says that the mean longitude of Saturn

_ ahargana—2491% ahargana
= 10766 ey = 780450

min.

Hence the number of sidereal revolufions of Saturn in a
Mahayuga

1577917800 1577917800

= TTH0766 ¢ VT 80450 x 360 x 60

= 148564908044 rev. — 908039 rev.

= 146564 -0000035 rev. = 146564 revolutions.

rov.

. the mean longitude of Saturn

ahargana X 146564 . .
= ~I5rot7e00  revelutions,

aharqana

=T Y76
1070“?1?561

revolutions,

CHAPTLR 1 47

ahargana

= ~o0766 rev-+ahargana { 1

T
—_— 1
10766+ 776 T10766 } rev.
146564 :

-

- ahargana ‘ahargana )
10768 '®V-T80450— ‘41507, MiD.

__ ahargana . @hargapa
10766 Y-~ Tgpas0 ~ min., neglecting the fraction 415

in the denominator of the second term.
rule.

‘This proves Brahmagupta’s

Again the ahargana till the beginnine 5
eposk 1578505, eginning of the Khandakhdadyaka

1375565 = 10766 x 127 + 8283.

1375565 x 10766

80450 % 21600~ © 92220.

Again

Hence the positive additive =8274°47771;

th ; ’
=10766 827447771 =2491 52229 ; ° negative kicpa

in its place Brahmagupta takeg

! 2491'5.  Thus a residue of == NeiG6 - Seconds, i.e,,i‘229?<.;129’6

Ssecs =976 " 110766
{ .= b seconds or 37, must be subtracted from the mean longi

tude of Saturn as found from the rule, vide Ch. i, 7 §

Hustration :—(a) TLet the ahargana be 726

_ 75 as bef.
mean longitude of Saturn at midnight at Lanka pefore. The

_T2075-21915 79675
10766 TV~ goago i

= 0 signs 6° 50/ 17 —54" ; subtracting 37 also we

tude of Satum=6 Signs 6° 49/ 20", geb the longi.

| (b) To find the mean daily motion of Saturn.

. _ 21600 .
It is= 16766 min. =% min,

6 (1st half). Of planets beginning 'with M
degrees of longitude of the apogees are réspe
22, 16, 8 and 24, each multiplied by 10.

ars, the
ctively 11,
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The loagitude of the apogee of Mars =110° = 3 signs 20°.
Mercury =220° = 7 signs 20°,
Jupiter=160° = 5 signs 10°,
Venus= 80°= 2 signs 20°,
Saturn=240° = 8 signs 0°.

® 1 i " ”
" ”» ’
" 12 ”

3} ” - ’"

Cf. the Sarya-siddhanta of the Parcasiddhantika, xvii, 2.

6 (2nd half) and 7. Of Venus the equation of apsis is
like (i.e., the game as) that of the sun, of the son of the
moon (i.e., Mercury) is the same doubled, of Mars it is
five times, of Jupiter the same increased by +th and
doubled, of Saturn it is the same increased by +;th and
quadrupled.

This stanza says that the equations of apsis of the ‘‘ star planets "’
are to be obtained from those of the sun in the following way : —

Venus’s equation= Sun’s equation,

Mercury’s ,, = Sun’s equation x2,

Mars's »» = Sun’s equation X5,

Jupiter’s ,, = Sun’s equationx (1+})x2,
Saturn’s ,, = Sun’s equation x (L + ) x 4.

The dimension of the sun's epicycle of apsis being 14°, it follows
that the dimensions of the epicycies of apsis are, for Venus 14°, for
Mercury 28°, for Mars 70°; for Jupiter 32°, for Saturn 60°.

These are in agreement with those of the Sirya-siddhdnta of the
Paicasiddhintika, and those of the Paulisa tantra, as quoted by
Amaraja. Cf. the editor’s paper dryabhata, already referred to. Ib
is further clear that the corrections to the mean motions for the
apbarent motions of these planets are to be obtained from the
corresponding corrections to the sun’s mean motion by using the
same multipliers. We shall consider the different dimensions
of the epicycles in the appendix.

8-9. Mars, by the degrees of Sighra anomaly (i.e.,
anomaly of conjunction) of 28, getting at the correspond-
ing equation of 11° rises (heliacally) in the east ; by the
next 32° gets 12° more of the equation ; by the next 30°,
10° more; by next 31°, 7° more; by next 14°, half a

49

degree,g these arg positive ; by the next 13°, negaiive 3°;
by the next '169," negative ,12° ; after this he is retrograde ;
by the next 9°, negative 13°, by the next 7°, negative
12}°. After this the parts of the equations occur in the
reverse order.

" The above two stanzas give the parts of the equations of conjunc-
tion of Mars thus:—

-

Incresss of the anomaly of con-

o

junction... 28° 132° ’30' 31° 13° | 16° l
Increase of the equation of con. ! f
junction.., e . 11° 12° |10° 7 1030 12°} 18°] 12°3¢
Nature of the parts Positive I Negative.

This means the following table of Sighra equations for Mars : —

Equation of

Degrees of anomaly
conjunction

of conjunction Phenomens

Rises in the' es:bt .u
£ de.s ',C‘:az

| 1 *
e«mwﬂﬁ%

+11°
+23°
+83°
+40°
+40° 30/
+37¢ 8(¢
+25° 30/
+412° 80/
0° o
—~12° 30/
—~25° 30/
—~37° 80/
—40° 30/
—40° O/
—-33°
—-28° ¢/ _
-11° O Sets in the west.
0° o

Retrograde motion begins,

0° Motion diredhls. vJ“i"“r gt B

Wk
-




These Sighra equations /are calculated on the supposition that
Mars’s epioycle of conjun {ion has & periphery of 281°, when the
circumference of the co é?
may be taken to be 234 and 860 units respectively.

In the figure givesf below, let S, E, P, be the positions of the sun,

' the earth and Mars, respectively. Complete the parallelogram

.Js{ S

SEMP; with M as centre and MP for the radius deseribe a circle.
This circle is the epicycle of conjunction of Mars. Produce EM to cut
this circle at K. The 2 PMK= ¢ 8'SP,* the angle gained by the earth
over Mars since the preceding conjunction. The ZPMK is
called the Sighra anomaly or anomaly of conjunction. We take
EM—280, and MP=234. The £/ PEM, which is equal to £ EPS, the
annusl parallax of Mars, is called the Sighra equation. The LMPE
is equal to the LSEP, the elongation. The £ PMK is given, and PM
and ME are also given. Hence in the triangle MPE, we have

EM—-MP

tan }(P—E):m tan § PMK,.
136 tan § PMK,
126 ' _-
s Lten }(P —E)=log( 594 ) +Ltan § PMK, “............... (1)

Wae have also
}P+E) =} LPMK BTN )]

126
. Nowlog( 5o ) =1 3266841,

® The point  is on ES produced.

entric is 380°. +The radii of these circleg-_

LS ey w0 L «OHAPTER.II 51

.',3?0"\“@ ;%*«wrc PN .‘S
‘es g ‘ﬂ,l&és‘;ﬁ?MK_ 8nd the P.BM and Brahmagupta’s

ay;b Jreseﬁfed im & eompa.ratlve view,; —

. L )
LPME*® - 28° | 60° | 90°* 121° 185° 148° 164° 178

LPEM = 10°68 | 23° {33°1’ | 3956’ | 4083’ | a7°a1’ | as°g2’ | 12°3s’

Brahmagupta's '
vslpe of LPEM 11° 23* | 33° 40° |- 40°30° | 37°S0’| 25°30' | 12°80

It will be seen that Brahmagupta gives the values of the equation
within §th of a degree. It seems inexplicable why such discrepan-
cies should remain in Brahmagupta’s caleulations. It is probable
that he wanted to state his equations to the nearest half a degree.

Again he says that Mars’s retrograde motion begins when the
Sighra anomaly is equal to 164°. This requires examination. The
longitude 1, of P is given by

l=nt—6+E, where n represents the sun’s mean daily motion,
t, the number of days elapsed since S was at the origin of celestial
co-ordinates, 6 is the angle PMK and E stands for the angle PEM.
It is evident that nt=longitude of S.

dl =n___c_l£ "r24rpcos
dt dt \ r3+p2+2rp cos 8
—tan-1 P sin 6 , - -
E=tan F¥pcos B where p==MP end r = EM, and are

regarded as constant, .

Again 0= (n—n/) (t+a) when n’ is the mean daily motion of Mars
and a is a constant.

.0
o

= n—n/;

dl _ np?+w'r?4pr (n—n') cos 8

now gt - r34p?+2prcos "

Hence for the stationary point marking the beginning of the
retrograde motion, we must have
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Now n=5% 8/ and n'=31’ 26",
or n=3548" and n'=1886",
n+n'=>5434", p=234 and r=360;
cos § = — 959089,
8 = 163° 27,
Brahmagupta states its value to be 164°, Cf. The modern Sirya-

siddhanta, i, 63. In the Brahmasphuta-siddhdnia the value given
is 168. This last value is copied by Lalla in his Sisyadhibriddhida,

i, 47.

Again the elongation for the heliacal rising of Mars is indicated
to be 17°. This is in agreement with Arygbhetiya, Gola, 4, and
Brahmasphuta-siddhanta, ii, 51.

10.11. The son of the moon (i.e., Mercury), by 51° of
Sighra anomaly, getting at the Sighra equation of 13° rises
in the west; by 38° more of the Sighra anomaly, 7° more of
the equation ; by 81° more of the anomaly 1% degrees; these
parts are positive ; the parts then become negative ; from
this point by 26° more of the anomaly, 5°; he then becomes
retrograde ; by 9° more of anomaly, 3% degrees; he then

sets in the west; then by 25° more of anomaly 13° more of
the equation ; then in the reverse order east ward.

These stanzas mean the following table for Mercury;:—

Tncrease of | Tncraase of the - . .
Sighra anomaly Sighra equation $ighra snomaly | Sighra‘equation| Phenomens
_—_—_-__f-—-d
0° 0* Motion direct.
51° +18° 51° +13° - ! Risesin the west.
a8° +7° 89° +320°
31° +1° 80 120° +21° 30’
26° -5° 146° +16° 30' | Retrograde mo-
tion begins.
9°* -~3* 30 156° +13°0’ Sete in the west.
95° —-13° 180° 0o
25° . -13° 2058° -18° 0 Riges in the east.
g* -3°80 214° —-16° 30/ Direct motion
begins.
28° -5 240° —-21° 30
31° +1° 80 2mn° -~20°0
83° +7° 309° -13°0 Jeta in the esat.
51° +18° 360° 00

CHAPTER 11 &

We now proceed to examine the equations.
L]

Ml

Let E, 8, M, be respectively the positions of the earth, sun
and Mercury. With 8 as the centre with radius SM describe a
circle which is Mercury’s orbit or the epicycle.

As in the case of Mars, if ES be taken=:860°, then SM is here
=182° as appears from the mean of the results from the first three
figures of the equations. If on this assumption, the equations are
worked oub, for the values of the angle MSK, vfs.,

51°, 89°, 120°, 146°, 155°, they become

18° 87, 20° 1/, 21° 15/, 16° 25/, 18° 4/ ;
while the values given by Brahmagupta are

18°, 20°,  21° 30, 18° 80", 18° respectively.
,\Eyldenﬂy 21° 80’ in place of 21° 15 ig an error of calculation. If
wio’ L’tﬁ%ﬁf 4iid8 SM be oaloulated, taking ES=360, then

'_-i , at:lBB”" 5jh ey, |
.‘m w 335&5 Ta‘E'Mt“parallel | to SM ; then exactly as in the
; . ,,
1=nt-L4 1? l 1s ‘the geocentno longitude of M ;
nt thééngi 919 M'; 0the LMSK,

np‘}nﬂ’%pr {n+n’) cos
ﬁd&ﬁ-}m cos 0+ p?
angular veloo&ﬁ ﬁ' and 8 about E, p=8M, r=ES.

,o»;

The valugof “ fa !or the stationary point is given by

24
X .
-_--

; where n, n/ are the respective

wher%‘.”;,; e 5 821 = 14782,
ok e 500 81 = 8548;
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cos 6= — 573%%13%%% = — 8248290, »

. 9=145°84' which according to Brahmagupta is 146°. |

" The elongation for Meroury's helisical, rising is indictafteigzto__b ;

. 18°, for it is the £ MES in the figure. This agrees with Aryab

Cf Aryabhatiyae, Gola, 4. Accor

this angle is 14°. S
| : '-.12-13. Of Jupiter getting at the equation of ‘ct?njun.c-
: ‘tion of 2% degrees by the anomaly of 14° and rising in
the east, the parts of the equation are by 40° more of
.anomaly, 6° more of the equation ; by 360. more of
anomaly, 3° more of the equation ; by 182 more of.tihe
anomaly, 10" more of the equation;  these are the poslﬁfve
‘parts of the equation and from this are staiied the nlegatlve
ﬂparts : by 22° more of the anomaly, negative 1° 30" more;
he then becomes retrograde; by 14° more of anom'fmly
‘negative 2° more ; by the next 20° of ano.maly, negative
4 more ; by the next 16° of anomaly negative 4% more of

the equation ; then the parts of the anomaly and of the

equation occur in the reverse order.

ble for the Sighra equations

i

Here we sre given the following ta
of Jupiter :—

ding to the Brdhmaaphtifi-éi?idﬁdﬁta‘ '

Y

‘ f the | & Iy | §ighrs equation| Phenomena }
Iocresse of the | Increase of the | g4 anomaly | Sig q
s;l;‘hra snomaly | Sighra equation \ \
()'- 0° Motion direct. [
B a*0(’ 14° + 2°90 Rises in the easth
ue s 54° + 8290 :
40 g 0 90° +11°20
86° 1) 108° © +11° 80/ )
18° . o 130° +10° 0 Retrograde motion
22° -1°8 begins. .
PR -0 ¢ 144° +8 o
o _i- o 184° 40
%. -4t 180° 0. o K
16 o o 196° -4 0 .
o Tt 0 2167 —& 0 . .
20 % 280° -10° ¢ Direct motion be-
14t -2 v gins. :
s . —1°80’ a53° ~11°8
Y %g. - +$'%g’ 2700' —é‘l,a % S ot .
o | 30 "See | T 20 | Beta inthe west.
:20 - +2'20' 860° (i 0'.:,?’_‘ L
jjﬁ'.ﬂa‘ﬁ“

< i

‘ for bng a superior planet, the figure for its eﬁicycle will be

i

?.E. for Mars, A preliminary examination of the table
ithe case of Jupiter MP=173, when EM =860, The
u:s.' of the Sighraeg'g ation for the values of the Sighra
l"v,% L ':A f 5‘, ... - .

"ok 1005, 148°, 184,

G
«
[

LN
2%

?1:5\28', 0° 58/, 7° 59/, 8° 54,

)y 8° 14/, 11918

yen by Brahmagupts s —

‘80 20, 110 HE T8 D, g0 o
’ : :"‘i"“ ! » » 4 .

il Y

=

=

b

22 = _".578070

£ 22° 58, which may be taken at 125°. This agrees with
{ tahn?,qaphuta-aiddhdnta, ii, 48. But the Khandakhddyakd '
E?a.te_as 11; to \bf 130° ; this latter result is in agreement with the
Surya-siddhan’a, ii, 58. '
Agaip tg!ié‘i«lpngation for J upiter’s heliacal rising is indicated to
~;l1° 40V, - This is not in agreement with the Aryabhatiya.
. . " , .." .
14.-15. - The son of Vrgu (i.e,, Venus) getting at the.
s dsquation of 10° by 24° of Sighra.anomaly rises in the west;
11N §0y 39° more of anomaly, gets 16° more of the equation ;
Wi ° more . ' { 4 ;
,,.y 33° more of anomaly, 12° more of the equation ; by

1 l,"17_° more of 'tﬁé”anomaly, 7° more of the equation; then

() ; fy 18° more, 1°% ;\;these/ parts are positive ; the next ones
hre negative ; by 13°\mpre of the Sighra anomaly, negative
/%% ; by 11° more, negative 10° more ; he then becomes
; “(eﬁrog'rade ; by 120 more, negative 24° more ; by 8° more;

gative 8% more ; from this the parts occur in the reverse

er as before,

£ : :
d«,:—,ﬁo? obtained by taking °

Vi
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These stanzas give the table of Sighra equations of Vev, b

Sigh ] rieing and setting is indicated to be 10° in the west, and in the east
different values of the Sighra anomaly :— ‘

the same is indicated to be 8°. The mean of the two values is in

l‘ ) « 3 | 43 sgreement with the Aryabhatiya, Gola, 4.
Sighra Sighra Phenomena |
Increase of Iucreass of o | equation . » . .
Sighra anomaly [Sighre equation | anomaly 164 | .. .16-17. Saturn, by 20° of the Sighra anomaly, getting
_ - v ¥ . S
. | 0 'Motion direst. |1 Bnl the equation 2°, rises in the east ; then by 36° more, gets
0* ° isen in the weat, ‘ .
24* +10° x | +100 Riseninihe »3° more of the equation ; by the next 20°, 1° more of the
° +16° ) r . .
. T12° Iggi 1 :258: : H; equation ; by 20° more, 20° more of the equation : the
. +7¢ ’ e s . .. .
R +1°15 iéi | :i‘;?"' "+ -Afg parts of the equations are positive up to this; henceforth
T4 . : “ X .
13 o e +3°  etrogrede wmo-V'Eithey pecome negative ; by 20° more of the anomaly,
" 10 ! tion hegina. k. . , p
o b + 8 ltetain the westd B negative 20° of the duation ; he then becomes retrograde ;
12° -24 . 180° o 0° - ‘ 4\ A H
B s ) 8 0 -8 Bises in the oast, ¢ by 17° more of the anomaly, negative 1° more of the
* -2 . . . —g9° Direct  movwon ¥ .
1oe —24 195 32 [ begirn, '% equation ; by 22° more, 2° more ; by 25° more 3° more ;
o N .
1° _19195' g(l)gj iy : l.-:é*hhen parts come in the reverse order.
18° - o —45° N - -
. +1°156 , 2370 ! o o
%.8,. +7 gg‘};o | :gg, i £ The above two stanzas give us the table of Saturn’s Sighra
38° +12°, 396° -10°  equations; it is as follows ; —
gi: Iigo 380° | 0° Q‘Fag.‘ in. the cant. I% iT’c’ .
- v ; Increase of Increase of ' Sighra ! Sighra Th
This table readily yields the result that SM (in, ho figure for T:"’ahf“ snomaly | Sighre equation .  anomaly j equation enomena
: ‘ calewntixd values 6 — - .- - e
Mercury) is taken at 260, when SE is 860. The o o N ! - ‘| ) o o
: R for the values of the Sighra anomely,. viz,. ) : i 0° ’ 0 Motion direct,
of the Sighra equations for - gg +§ | 20 +o° ! Rises in the eaat.
o [ . “ ° +8° 5uo . +5°
o0, 63°, 96°, 1287, 141°, 154°, 165°%, wil % L o
’ ° 1/ o 4t 81° 44, T* e +0°20/ 96° | +6°20°
are 10° 2/, 25° 51/, 87° 61/, 44° 57 46° 1, 42° 4/, ’ ¥ 20° ~0°2(/ 116° +6° - Motion  retro-
¥ de begins.
while Brahmagupta’s figures are P  ge, ;;: i -;' 133° +5° grace bogins
. ) 496 ° Lol © -2 165° +8°
10°, 26°, 38°, 45°  46° 15, 42° 32} : gg' -3° | 180~ 0°
i ° -3 205° ~3
Again the anomaly of conjunction or the Sighra anomaly for theg' 2g° —oe 917 -
ga . s given by— : 17 i -1° 244° —86° | Motion . direct
stationary point of Venus is giv ¥ }; o0° 020 ! 26t \ " begina.
. —_ ’ ] '—'6° OI :
R 0 npﬂ +n’r9 where p=2BO) T=3600 nl=96I 8’/’ n=59' 8'@' 28: +;)0201 . 284° —6° ‘
0080 = — —-7—7 o +1° 804° -5° '
pr (n+n) H gg‘; : +3 340° ~2°  |Bets in the
. Y +9 860° 0° £,
s 6 =167° 2. 'Py‘ i wes
Thus the Sighra anomaly works out to be 167° mnearly, but'}

here indicates its value Yo be 165°, Thisis in agreey We readily infer that MP (in the figure for Mars) is taken to be
Bral:m?f‘l:l;f.& Be:deh;nasphuta siddhanta \i,i‘\\48; the modern Sﬁyyaj‘f 0, when EM=360. The caloulated values of the Sighra equations
ment with his - L :

] for the Sighra anomalies, of—
Siddhanta gives its value to be 168°, Ch. ii, 54\ I e

. i 20°, 56°, 76°, 96°, 116°, 133°, 155°,
In oase of an inferior planet, the SZghra equation itself represents ?are respectively, :

the elongation. In the case of Venus the elonga\tiqfl for heliacal \

»

1° 68/, 4° 577, 5° 59/, 6° 28/, 6°, §° 2, 2° 59’ ;
3
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inferior planet to apply the elongation to the centre of the circular
orbit. Tt is difficult to see the necessity for such a complex rule,
| This very rule occurs in the Aryabhatiya, Kalakriya, 28 ; Brahma-
j‘pphuta-siddhdnta i, 40, and also jn the Surya-siddhanta ii, 44. The
concluding part of the stanza defines the term Sighra anomaly,
._We illustrate the rule from Prthiidaka’s example.

as given by Brahmagupta, they are,
9, 5°, 6°, 6° 20/, 6°, 5°, 8°.
Brahmagupta’s values are to be considered fairly accurate as hg
used a very rough trigonometrical table. Sabicy
Again the Sighra anomaly for the stationary point of Mears i
given by

. o 360, k- Illustration.—To find the geocentric longitude of Mars at the
cos § = — or (R F7) ;'where n=59' 8/, n'=2/, p=40, r=360. Wg;1; year 785 and 12 synodic months. The akargana is 72675. The
5= 118° 49 fmean sun as corrected for the midnight at Kuruksetra = 11 signs

£10° 117 92”. The mean Mars as corrected for midnight at Kuru-
Hence according to this calculation Saturn would be at thie

Fisotra = 0 sign 23° 10/ 56/, . Bub in place of these longitudes,

stationary point at about 114° of the Sighra anomaly ; in its plac Fprthidaka takes the mean sun = 11 signs 19° 11/ 19" and the mean

the angle is here suggested to be 116°. A(.:cording to Brd}-Lmav Mars = 0 signs 23° 10’ 507. Hero the mesan sun is the Sighra of
sphuta-siddhanta the angle is 113°, while according to modern Surye

Mars ; hence the Sighra anomaly,
siddhanta it is 115°. ) . . = Mean sun — mean Mars.
Agein the elongation for the helincal rising of Saturn is indicate@l  — 17 gigns 19° 11/ 19" — 0 signs 23° 10/ 507,
to be 18° H according to Aryabhat_aa it 18 15°. = 10 signs 26° (O 29" = 396° O 297/, .

18. To the mean planet apply half of the Sighrf] . Hence by Brahmagupta's table of Sighra equations for Mars, we

equation ; from the planet thus corrected, calculate t}_ et the °°"e'5_P°nding . |
equation of apsis, and apply half of it to the corrected meat i 319’";1 fﬂqlllmltlog i - 12: ;:: 2(5),1 ;
planet. From the mean planet as corrected for the seco The me‘:n ;4:‘:8 - O_signs o ko
time calculate the equation of apsis and apply the who: . @ N ;
of it to the mean planet with which the calculation begaifgy " corr‘:;‘::nby ::Zg

. From the planet, thus corrected, calculate the Sighrg 1ot oporstion
equation and apply the whole of it to this last correctedg
planet, the final result is the apparent geocentrigy
longitude of the planet. 'Phe Sighra diminished by they

mean becomes the Sighra anomaly.

= 0 signs 16° 38/ 25,

Longitude of the apogee of Mars = 3 signs 20° oo
The mean anomaly = 8 signs 26° 83/ 25/

.

3 the sun’s corresponding equation from Brahmagupta’s table
 the sun = + 182/ 517

-

Here are indicated four distinct operations to find the geocentrig Mar’s equation of apsis = 5 X sun’s equation

longitude of & ‘gtar-planet.” In the third operation to the mefi¥y = + 664/ 15"
planét at the starting is applied an equation of apsis which does n{§ This halved = + 832/ 8/
pelong to it. This is not intelligible. In any case the first tvil = + 5°82 8",

operations are not intelligible. The natural steps must be (1)
the case of a superior planet to find the heliogentric longitua
and in the case of an inferior planet to get at the centre
the circular orbit and (2) in the case of a superior planet to apply t
annual parallax to the heliocentric longitude and in the case of argg

The mean Mars as corrected by the 1st operation
= 0 sign 16° 88/ 25.

: '.;‘195. the mean Mars as corrected by 2nd operation

of = 0 signs 22° 5/ 88"
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Now longitude of the apogee of Mars = !
the mean anomaly = O pigns 2° 5§’ 33" ;’

.'. the sun’s corresponding equation from Brahmagupta’s tablej;
= 1887 187; 4

Mars’ equation of apsis = 11°
The mean Mars before 18t operation = 0 sign 23° 1¢/ 50", ¢
.'. the heliocentric longitude of Mars = 1sign  4° 17/ 20", :
Again the Sighra of Mars = 11 signs 19° 117 197, ¢

.. the Sighra anomaly

3 signs 20° 0 07

= — 17° 24/ 45",
Now Mars’ heliocentric longitude = 1 sign 4° 17’ 20",
‘. Mars’ geocentric longitude = 0 sign 16° 52/ 85/,
This illustrates the method of the Khandakhddyaka, for finding
the geocentric longitudes of Mercury, Venus, Mars, Jupiter, and
Baturn. The equations of apsis are given at the interval of 15° ; the
results obtained by taking proportional parts are rough. As to the
table for Sighra equations they are not very accurate and ‘proportional
parts’ would never lead to mathematically correct results.*

19. In the same way are to be found the apparent
daily motions of these planets: the daily motion of the
Sighra diminished by the apparent daily motion in the
third operation becomes the divisor for arcs passed over
and the arcs to be passed over of the Sighra anomaly for
the heliacal rising and setting, retrograde motion and the
like. By means of this daily rate of increase of the Sighra
anomaly are obtained the days passed over and to be
passed over of any of the above phenomena.

1llustration.—(a) To find the apparent daily
at 786 Saka year and 12 synodic months,

motion of Mars

Mars’ Sighra motion = 59/ 8
Mars’ daily mean motion = 81/ 28" n';
.. the daily motion of the Sighra anomaly = 27’ 82" av{

The tabular differences at the 1st operation =

T 3
*# Brahmagupts in the Uttara Khandakhddyaka, Ch. 1, however, gives 1ply tL
methods of interpolation to make up for his rough tables here.

o 80n, i}
3

= 10 signs 14° 58’ 59" ;
.*. the Sighra equation by Brahmagupta’s table %

\trie
% s
1e |, é“. ‘Lapplied positively to

12°, for the inter- f’} 'j}i“
val of 82° a:
- . ot

the increase of the Sighra equation for 27/ 824,

> .

227 82" x12 __ 40/ 190,

32

This halved = 5 10, |
As this is obtained from the positive tabular difference of 12,

4 this last result is applied positively to the mean motion.

The mean daily motion as rectified by the first operation
= 81/ 268" + 5/ 10" =386/ 86",
In the second operation, the tabular difference is 5' for the
“perval of 900/, hence the apparent daily motion as correcteq by the

isond operation

e

, a8 the mean anomaly

/ _ ge gon+ O x 368075
/ - 3 900
Eiea in the third quadrant,
i = 81 55" ‘
f’ In the third operation, the tabular differerce is also & for the

'\;irinterval of 900, hence the apparent daily motion as corrected by the
. third operation,

87 55" x_5 as the mean anomaly lies in the
= 81/ 28"—5x - —goo
fourth quadrant.
= 80/ 28", , /
ion in Si — 30/ 28"
: i tion in Sighra anomaly = §9/ 8//—30
. the el mo = 98’ 45"; this will be used

o time of heliacal risings and other phenomena.

oo T g e

- later on for finding th
The increase of the Sighra equation for 28/ 45

&

E

_ 28/ 46" Xx12_ yo 470

- 82

As this is obtained from the positive tabular difference of 12, it is
the rectified motion of the third operation,
y motion of Mars= 80/ 28"+ 10’ 47,

' “'Thus the apparent dail
T2

(b)) From Mars’ longitude as caleu]atec'l be?fore, v.fz., 0 °sign,
16° 52/ 85", and the mean sun’s longitude which is 11 signs 19° 11
197 it is seen that the elongation from the mean sun= 27° 41/ 167,
" again the elongation for setting= 17°. It is proposed to calculate

P
i

6
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-

in how many days more will Mars set heliacally.
suggested by Brahmagupta is this:—
The Sighra anomaly at the fourth operation

The method

i

10 signs 14° 53/ 697,

the Sighra anomaly for setting in the west = 11 signs 2°,
v the Sighra anomaly to increase by = 17° ¢ 17,
rate of the Sighra anomaly = 28/ 451 ;
. 17° 6/ 1”7 d
o the time after which Mars will set = of 45n days

= 85 da. 41 gh. 21 binJE

This finishes the second chapter of the Khandakhadyakakarana

which relates to the mean and apparent longitudes and daily motions B

of the ‘star planets.’

.

CHAPTER III

On the Three Problems relating to
Diurnal Motion.

1. 159 divided by 16, 65 divided by 8, and 10 divided
3 ; multiplied severally by the equinoctial shadow
%c., of a stick 12 units high) are the binadis of half the
Triation of a day from 30 ghatikis at the end of the 1st,

nd, and 3rd signs of the zodiac respectively.

f;’l'he term equinoctial shadow means the length of shadow on

] '{ horizontal plane of a stick of 12 digite set up vertically on the

gound, at noon of the day on which the sun is at either of the

'inoxes. If ¢ be the latitude of the station, it is taken = 12

o, although this should strictly be = 12 tan (¢~ sun’s semi-

Epumeter), if the shadow be measured by the umbra.

B "ll‘he arithmetical figures of this stanza have already been
fpsidered in Chapter I, stanza 21. It now remains to give here the

ionale of the rule:—

L —. B sin §x12 tan ¢ R
(4 variation of a day) = 12 X5 cos § °

’:ccording to Indian astronomers, half the variation of a day,
gu the diurnal circle between the horizon and the six o’clock

8in

Mo (i.e., the great circle passing through the celestial poles and
Bast and west points). The ‘sine’ of this arc in the diurnal cirele
alled Kujya ; whizh reduced to the great circle becomes the
bf cara or § variation of a day.*
. arriving at the equation given above, two similar right-

Biles are used.

Fho first of these is thus constructed on the armillary sphere : —
B'a point of intersection of the diurna) circle of the sun and the

: ,Pck circle, let two perpendiculars be drawn, one on the line

angled

el
i 1]

* Bhaskara II, Gola, vii, 1,
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on the east-we: e

perpendiculars cons\B\% tne- wwo sides of ﬁght-hkh

the first is called the kujya or ‘earth sine,’ the second is | _

between: the diurnal circle and the celestial equator and ismt «3
the ‘sine’ of the declination. The third side which is on the horignr _
i3 equal to the distance between - east-west line and the line of”
interséction of the diurnal circle and the horizon ; thig side is equal
to the ‘sine’ of the amplitude and called the agra. This triangle -y -
is thus stated by Brahmagupta in Brahmasphuta-siddhants, xvi, 61,
‘“The base is the ‘sine’ of the declination, the perpendicular is the
ksitijya (or kujya) and the square root of the sum of the squares

> im the agra or the ‘sine’ of the amplitude.”” =~ - :

-Of this triangle one acute angle is equal to the angle between
the horizon and the six o’clock circle, and is equal to the latitude
¢ of the observer. : ' -

The second triangle has its base equal to the gnomon,
high, and the perpendicular equal
shadow ‘of the same gnomon.
= ¢, the latitude of station.

From the above two similar right-angled triangles, we haj e

kujya : B sin 8 = Bquinoctial shadow 2 12, whand &)
sun’s declination. LR e

o Hujys = R sin § x %Eguinocﬁab shadow';i o

P 12 . o o ‘ ~'ﬂ::{ﬁ;--
* Now this kujyZ is a ‘sinc’ in the diurnal circle of radfy : ,
It becomes the carajyd, when reduced to the greabsircle. = 4

Bsind . mquisotial shadow x - B J
12 Reosd B

12 digits
to the equinoctial - midday
This triangle has one scute angle

i

+.". R sin (care) =

2. Multiply the number of minutes of the daily motiorfs j
of a planet by the number of binadis of ascensional
difference or cara and divide by 3600 (i.e., the number of.
binadis in a whole day); apply the resulting minuted
negatively o planets at mean sunrise and positively tg
planets aft mean sunset, when the sun is in the northers
bemisphere and in the inverse order when the sun i j
the southern hemisphere. " .

o
_ This stanza has been already explained in Chapter I, See stan’gg
22 of Chapter I, e

P
o

“e:w"

vt

* the ascensional difference when the*sun i; i(rlx tlneset(llor::l;::

i L d and decrea _
misphere and respectively mgrease ised 1
»tse sult)x is in the southern hemisphere, df)u-l)led will gl‘verthe
5 Jengths of the night and the day in ghatikas.

* Phis is the same as the 23rd stanza on Chapter I.

4 The durations in bindadis of the _risings of the ;ﬁre;t
A hree signs of the zodiac at L‘anlfa‘ (i.e., on thebgq\ftali:roé
978, 299, and 323. These dxmlmsh?d by the ‘ma‘_ s of
al ascensional difference are the durations of tEe rls.;t:n
the three signs at one’s own place. The figures wri for
“'the reverse order and increased by the ascensio

durations ofssthes
X rder are the durations ofssthgs}
ifference in the reverse o o6l Pt

Doratioh of the
ion i inadi d- oratio :
Dur;flon[ lt.ll‘le ii‘: ﬁ::i::i?:;lc‘c)ll;?:rpaﬁ:e risiml;{ of tl?e :lgn
-b-'"&'zf’:l):e 8ign ‘st Kurukget:a acc. to st x;gn&;;r N
rlos;ntgb: equator . Pythadaka in bin
' -89 200
.2‘238 —57 33(2)
823 —-23 i
328 +23 ggg
209 +57 s
278 +69
278 +69 47
209 ! +57 326
323 - +23 '
i —-28 300
ggg - 57 ’ L ggg
278 -89 N .

¢
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The binddis of ascensional difference for each sign of the zodia:

have already been considered in Chapter I, 21. It is first necessary " Now R sin M = ™ 5 x R,
to explain how the durations in binddis of the .risings of the signs ! B cos
t tained. '
on the equator are obtaine . v ke s o fsin Lx B cos w B
The method is thus expressed by Bhiskera in his Grahagapita, e sin TM = 53 B cos §
Spagtadhikdra, 54, 55, Commentary, thus:— %
‘“The ‘sine’ of the last point of Aries in the ecliptic is the hypote- ; or R sin R.A_=R sinlx & %"S “_, where R.A. stands for
nuse, the ‘sine’ of the declination of the same point is the per- ! E cos .
pendicular......... , the square root of the difference of their squares @ the arc rM (2)

.is the base and is a ‘sine’ in the diurnal circle of the same point.
In this way the ‘sine’ of two signs is the hypotenuse and the ‘sine’
of the declination of the same is the perpehdicular, and the square- !
root cf the difference of their squares is a ‘sine’ in the diurnal
circle of the last point of Taurus. In the same way the ‘sine’ of © ' T
three sigus is the hypotenuse, the ‘sine’ of the maximum declination ¢ i Acc. to Brahmagupta | Ai;ﬁ:l;fgl;“t
(of the sun) is the perpendicular and the smallest radius of the {:
sun’s djurnal circle is the base. These bases are reduced to the
* great circle, These bases are multiplied by the radius and divided by r;'h
the radii of the respective diurnal circles and taken as ‘sines’ of the £ 3, = 1288’ . 1288
ares, of which the first represents the duration of the rising of Aries,
the second of the first two signs, the third of the first three signs * [: 8y = 14407 1440
Let O be the centre of the E‘»
armillary sphere ; P, the north / And the values of R.A. “for 1, 2, and 8 signs as calculated
celestial pole ; rM@, the celestial"f
equator; rSC the ecliptic, 1C = rQ

a

o

Now the values of 8 at the end of 1, 2, and 3 signs are respec-.

tively ¥ :—

E PRy i

5, = 703! 704!

are respectively *:—

= 90°, PSM & secondary to the =
a _ _ Calenlated ; ! Differ i As given b
oo 05 S0 =3 oy [ [ e | s | Pl | g
ionof 8 ; = ‘sine LRV qo_ N S

Here nm is the sine of rM in the ' 970 40 o 49/ 978
diurnal circle of 8. Here £S8am = 4 21 218 7
= LCOK = w, the obliquity o A6 57° 43¢ 29° 54! 299 299
the ecliptic ; CK = Rsin w, QR . 00 117

= Roosw Sm =R sind, Sn = R sinl. k¢ 90 82° 17 328 323

. 8m : 8n = CK : CO,
R sinIxR sin w This proves Brahmagupta’s rule.

orRsind = ———— -2
E Now we consider the time interval for the rising of the arcl

Againnm : n8 = 0K : 0C, | :nt a place of which the latitude is ¢.
. RsinlxRcosuw | f :
[IR3 nm = - “"E - ?

* The cbliquity of the ecliptic has been taken to be 24°% as in all Hinda
| astronomical works.
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The time in which Pisces rises is 209 binddis,

. . . ) 209 x 613 24 |
the time in which 618’ 24/ rises= “T30x60 bzvzdd?s

Let NPZQ’ be the observer’s meridian ; N, the north point ; P,
the celestial pole ; Z, the zenith ;
@', the culminating point of the
equator ; NS'r, the horizon ;
r, the east point, to which
the first point of 7 coincides ;
C8rC', the ecliptic. The arc
r8=1. PSM is the secondary to
the equator ; SS’ a part of
the diurnal circle of S. The g
time in which rS rises above
the horizon is represented by
£ 8PS in the figure.

= 71222 binadis
, = 71 binadis.
"The time elapsed since sunrise
= § ghatikds= 300 binddis.

-Now from 300 bindadis,

~subtract - 71 binddis for the residue of Pisces,

; also 209 binddis for the sign Aries,

20 binadis of the duration of the rising of Taurus is

o passed;

“and 20 binadis of Taurus corresponds to %15220 degrees or

Now £8PS' = rPS—rPS/
= tPS—(S'PQ'—Q'Pr)
= rPS— (half day—6 hours)

= rPS—ascensional difference for S.

28' 45/,
- Now Sun + residue of Pisces+ Aries+2° 28/ 45/
; = 1 sign 2° 28’ 45", which is the longitude of the orient
gcliptic point,
Here rPS represents the time in which I length of arc rises on

" the equator. Now by puttingl =1, 2, or8 signs, we have the
local intervals (sidereal) for the risings of 1 sign, 2 signs and 3
signs. Now each of these subtracted from the next gives the
durations in which the signs of the zodiac severally rise at any ‘ ow, 2° 28/ 45/ of Taurus corresponds to 20 binadis, by t;he
place. Thus is proved the second half of the stanza. pnverse process.

id (b) To find the time elapsed since sunrise when the longitude
! ;the orient point is 1 sign 2° 28/ 45", and the sun’s longitude is
] signs 19° 46/ 36", . "

5, The sun (i.e.,.the sun's longitude) increased in
proportion, from the time in ghatikas elapsed since sunrise,
by means of local time durations for the rising of the signs
of the zodiac, becomes the orient ecliptic point ; again by ¥

making the sun (i.e., the sun’s longitude) equal to the ¥ERKurukgetrs, the sun’s longitude being 11 signs 19° 35/ 39/

orient ecliptic point by the local time intervals for the

e

' ) i ) ‘Now 19° 88/ 89" of Pisces correspond to
rising of the signs, is found the time elapsed since P

19° 38/ 397

sunrise. gps %209 binadis = 187 binadis.
Ilustration.—(a) To find the orient ecliptic point at & ghatika 8 ghatikas = 180 binadis ;
elapsed since sunrise at Kuruksetra ; the sun’s longitude being atjl difference = 43 binadis.

that instant= 11 signs 19° 46/ 86",

. . __ 43x80°
"? Now 48 binddis of Aquaris= 55, = 5°19 507 ;

Here the remainder of Pisces =10° 18/ 24/'= 613/ 24/, "

Y
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. the longitude of the orient ecliptic point J 5 7. The declinations (for each half a sign) in minutes
= Sun'—19° 38/ 897 —5° 19/ 501 ; are 362, 703, 1002, 1238, 1388 and 1440, increased or
= 11 signs 19° 88/ 89" —19° 38" 897 —5° 197 Ho % decreased by the planet’s celestial latitude, according as

= 10 si 24° 40! 10/ 5 . . .
808 247 407107, i they have the same or the opposite denominations.

6. Thirty increased severally by nine, six and one :
tv‘(enty-four, fifteen and five are the tabular differences of, :
.‘smes’ at intervals of half a sign. For any arc, the ‘sine ’
18 the sum of the parts passed over increased by the {"

(I))‘:'zfortlonal part of the tabular difference to be passed ‘ 8. Diminish or increase the latitude of the place by

) .. the declination of the sun (according as he is north or
south of the equator) ; call the result anasie (i.e., not
disturbed) ; the ‘sine’ of the arc got by subtracting the

This stanza is the same as the 20th stanza of Chapter 1. The
axplanation, ete., of the stanzs have been given there, The method
of finding the declination for any valud of the sun’s longitude has
also been discussed in the exposition of stanza 4 of this chapter.

As explained already in Chapter I, the stanza means, 150 sin 15°
= 89, 150 sin 80°=75, 150 sin 45°= 106, 150 sin 60°= 180, 150 sin t

150 145 and 150 sin H0ree 150 +. anagte from Y0 is the divisor of the ‘sine’ of the anasta
Tho method of arriving at tho “sines’ is thie._. + multiplied by 12. The quotient is the length of the shadow
‘Sine’ of 80°==150 sin 30°= 75 ~ of the gnomon at noon.
‘Bine’ of 60°=y 150" =75* = y16675 = Y 16875x625_ 8248 If ¢ and & be the latitudes of the observer and the sun’s north
25 25 ﬁi, declination respectively, then
ey " / ¢~8 = anasta or the sun’s meridian zenith distance,
s , g The rule says that the shadow of the gnomon
. ‘vers’ 80°= 150~130= 0. i = Bein@-8x12 _ _ 15 tan (p—3), the usual height of the
N oo . i Rsin {90°—(¢—3)} : -
Sin’ 15° = §v/ 757+ 307 = 8825 = 3. | guomon being 12 digis.

* ‘Sine’ of 75°= M150,_§22§ 9. The radius divided by the ‘sine’ of the complement
4

%

1
~of the sum or difference of latitude and the declination,
and multiplied by 12, is the length of the hypotenuse (i.e.,

~ 14422 _ A
= l4d g5 = 145. !\ the line joining the top of the gnomon to the end of its

25

' = 1. noon shadow) in digits, ete.
Again ‘sine’ 45°= «/15202 el ] ’
; 1f this hypotenuse be denoted by k,

then b = Rx12 = 12 sec (p—3), where & is north.

R cos (¢—9)

The rule as the previous one, is evident.

2 .
=106 "=

9% 1086,

The above method is that of Brahmasphuta-siddhanta xxi, 20.91 |

T.he 'rflet'l}od of extracting the square root is given by Sridhara, i

his Trifatika, rule 48. This must have been known to Aryabhata ana} ! /[lif]

Brahmagupta and used for calculating the 24 ‘sines’ in g quadrant,
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tively According to the rule,
u (i.e., 144) ; the results are TESPectie . .
blsl' Sqﬁaggv:faiiinfge@hypotenuse. Half the day diminishedis antyd = R + R sin (cara),
:) ; zh: hour angle is either the part of the day elapsed or: = Tt vers half the day.
y g

y enuse at any d Slled me,

- antyd x mlfld&)' h)‘POtepﬁg, where h is the hour angle. -
antydi — R vers h

The meaning of this stanza is clear.

. foea s I The truth of the rule may le seen thus:~-let z be the sun's
i two places, divide in each
11. Put down the radius in

. iplyii zenith distance at the time, ¢ and 8, the latitude of the observer and
i hadow, multiplyys zenit ,
tenuse of the equinoctial s |
place by the hypo

i 1q77: the sun's declination respectively.

i i.e., 12) and the equinoctia.is
I e e v ‘i(:nkue(ll.‘:si)ecti)ve]y the ‘sines’ of%; Then, the hypotenuse at any desired time = 12 sec s.
B tnde twg I;ZSU lstailiude The arc of the ‘sine’ ofi”  The midday hypotenuse = 12 sec ($—3), since ($—38) is equal
the colatitude an e la .

‘to the meridian zenith distance.
the latitude is the latitude of the observer.

@

We are to show that

s by P, end the equinoctial}

Let the equinoctial shadow be denoted by ( RxR sin 8x B sin ¢

B4 "o 2 T 312 sec (9~8)
L B cos §x B ¢cos :

hypotenuse by H. Then P = 12 tan ¢, H = 12'sec ¢. The stanz

. : P 12 sec ¢ =
Rx12 _ 4 Rsne= EX5. ExE o -
Rcos ¢ = and R sin H BxE sin8xRsin ¢
aays that B co ¢ H R cos 5X & 005 ¢ 4+Rcos h
12. Subtract as many- parts as possible of the_tabuls 12 - 12

i - 5 s i which is evident.
. . ‘sine’ ; multiplys; «¢oss sin 8 sin ¢+cos & cos ¢ cos & '
differences of the ‘sines’ from the given ;

the remainder by 900, and divide by the ta?)ular fiiﬁerence‘g}
that cannot be subtracted ; add the resulting minutes t

00’ multiplied by the number of tabular differences passe it in the armillary sphere, from any point of the sun’s diurnal
9 mujup : ult will be the arc corresponding to th rele 8 perpendicular be drawn to the line of intersection of the
over ; the final res sthorizon and the same diurnal circle, this perpendicular is called

given ‘gine. Ldgtahrti ; the perpendicular from the same point of the diurnal

~ Now we turn to the method by which the rule was obtained by
:: Brahmagu)ta, '

¥,

finding the arc when the sine is Lnown, is alread;-'@?rcle. on the horizon is called éanku. The line joining the feet of
A rule forChn ltj L 8 %ghcse perpendiculars lying on the horizon is called éanikutala. In this
explained in Chap ) 04 .ggriangle, which is right-angled the angle opposite to the dankuiala

18. The radius increased or decreased Ly the ‘sine’ ofjs = ¢, the latitude of the station. Again it from the poiat of

. . : &i mtersection of the diurnal circle and the meridian, a perpendicula

iati day 1.6., 81Nn€ of cara), is calle 3 . i , perp )

balf the Var:atlond 0? t:h Zf half(the,da Antyd dimini Ahe"’fh};.e drawn to the line of intersection of the diurnal circle and the
ant'y[l.or the ‘versed sine Y. n min G

3 i )b . . .
the ‘versed’ sine of the hour angle of the sunis theRorizon, it is called cheda ; the perpendicular from the same point
by the ‘verse

pf diurnal circle on the horizon is called the midday danku ; here

divisor of the antyd multiplied by the midday hypotenuse ﬁgjsﬂ Lhe 126 oiing the st of s e mecreremiadey daik ; bore

The quotient is the hypotenuse of the gnomon triangle a"?!é‘lﬁh lino ia the third sids of a rightamgled fuimarte ot ien s

) . éne angle is ¢.
the desired time. 1 .
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"From the above two similar triangles, we get the proportion:—

midday danku_ _banku

cheda istahrti '
sank igtahﬂixmidda fanku
anku = ..__——-——______-X—-—————

cheda

1i R be the radius of the armillary sphere, then,

R : #anku= Hypotenuseé of shadow : 12
12x R _ 12x Rxcheds
hypotenuse of shadow = % or = “faliyti xmidduy dail
hyp. of mid(}u_y shadow __ R

Again -+~ 12 midday faiku’

of middaz__s]ladow X cheda‘

hyp. i
o igtahrti

hypotenuse of shadow =

Now cheda is readily seen from the armillary sphere to be .

= versed sinc of half day in the diurnal cirele,

x antyd.

R cos d R cos 8
R R

(R+R sin cara) =

Algo istahrti

— cheda—versed sine of the hour angle ih the diurnal circle,

_ Reosd (R+R sin cara—R+ R cos h),

— Beos 8 (antyd— R vers h) ;
R

Spsar ol A

hjpotenuse of the shadow at any time,

hypotenuse of midday shadow X antya
=T antyi—E vers h

which proves'Brahmagupta’s rule. ,

14. Or, the divisor is obtained thus :—Subtract from
the time elapsed since sunrise in the forenoon or fror.r'\ Fhe 5
time to the sunset in the afternoon, the half the v‘a.ua]?on
of the day or the ascensional difference ; of the resultingly

arc take the sine and increase it by the sine of the care
or the ascensional difference, ihe final result is the same
divisor.

This is easily seen in the armillary sphere.

15. Multiply the antya@ by the hypotenuse of the midday
shadow and divide by the hypotenuse of the shadow at any
given time; then from the antyd subtract the quotient
obtained, the arc of the remainder taken as the versed ‘sine,’
represents the asus (=4.sec. of time) of the incline from
the noon (i.¢., of the hour angle).

1i the ‘versed sine’ of an arc be given, the arc itself is obtained
from the series of {abular differences of sines by using it in the
inverse order. This explains the meaning of the word * versed sine.’

Brahmagupta’s tabular differences of sines being

89, 86, 81, 24, 15 and 5, the tabular differenceg of versed
sines are, .

5, 15, 24, 81, 36 and 39 ; the sines are,
89, 75, 106, 130, 145 and 150 ; and the versed sines
5, 20, 44, 75, 111 and 150. Sl

The above stanza gives the rule for finding the hbhn\angle when
the shadow of the gnomon or the hypotenuse of the gnogon-shadow

triangle is known.

If % be the hour angle, it says that g

antyd x midday hypotenuse

R h = antyi— :
vers h = antyd Hypotenuse of the shadow

The truth of the rule is seen thus:— gl
We should have, s

Rx R sin 83X R sin ¢
I=<I£ K x B sin
B vers b + B cos ¢x R cos

( 1— midday hypotenuse
hypotenuse of shadow

1___12 sec (p—0)
cos ¢ cos &

12 sec #

_ 1t cos (¢—19) 'x(
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_ Rcos (¢—9) {cos (p—8)—cos 2 }
or Rvers h = =¥ ¢ ¢os 8 cos (9—39) )
) R {ocos (¢p—38)—cos z}
- cos ¢ cos &

or (1—cos h) cos ¢ cos 8 == cos (¢~ 8)—cos 2,

or cos 2 = sin ¢ sin 8+cos ¢ cos § cos h, which is evident.

We are now to consider how this relation was obtained.
As in the exposition of the previous stanza, we have,

midday fanku _ _fanku
cheda istahrti

_ cheda x §anku

fgtahrti = midday éanku’

Again, danku : B =12 :
: R : midday sanku = noon hypotenuse : 12,
.. danku : midday danku

. )

hypotenuse of shadow, an

= noon hypotenuse : hyp. of shadow 4

cheda xnoon hypotenuse

iqtah,rf‘l = hyp. of shudow

Now chada'Tigtahrti
= versed sine of the hour angle in the diurnal circle ;

versed sine of the hour angle in the great circ'e

R
= (chada-—tstahrtt) X T ooas

= antya— hypotenuse of the shadow

rule; This stanza and the next are taken from Brahmasphuia-

siddhdnta, iii, 44-45.

antyd X noon hypotenuse . which is Brahmagupta’s 1

CHAPTER 111 77

The truth of the rule is seen from the following steps : —
ahrti—kujya = sine of the complement of the hour angle in
urnal cirele ;
the ‘sine’ of the complement (;f the hour angle
. B , T
Boass (istahrti— kujya),

antya x noon hypotenuse

= Bypotenuse of the shadow - B sin (ascensional difference).

 The rest requires no explanation.
ﬁluétrations :
1)- Given that the longitude of the sun at noon at Kuruksetra

}l_’sigus 19° 58" 24", to find the noon shadow and the noop
¥potenuse (stanza 8).

he sun’s south declination = 4° 5 251,
igain ab Kuruksetra, the equinoctial shadow = 7 digits ;
the latitude of Kuruksetra = 30° 15’ 837 ;
the sun’s meridian zenith distance
= 34° 20/ 58" ;
, its complement = 55° 89/ 2/ ;
‘sine’ of 84° 20/ 58" = 150 X sin 84° 20’ 58"
= 847 38/,
‘sine’ of 55° 80/ 2" = 150 x sin 55° 89’ 2" = 1237 50-.

12 x ‘sine’ 84° 20/ 58"

The noon shadow
‘gine’ 55° 39/ 9"

_ 13x84738 _ _ .. .
= iesr Ry 8 digits 14/;

"the noon hypotenuse = V122 + (87 14/)2
= 14 digile 33/,

~¥6, 1If the same quotient diminished or increased by
the ‘sine’of the ascensional difference according as the }
qun is on the north or south of the celestial equator, be -§
taken as the ‘sine,” the arc of the same increased or
decreased by the ascensional difference (i.e., 4 the variation
of the day from 30 ghatikas or 12 hours) is the time
elapsed of the day in the forenoon or the time to sunset

in the afternoon.

Its sine

“the noon hypotenuse =

) To ealculate the noon hypotenuse by the rule of stanza 8
The complement of the sum of the latitude of the station and the
'8 south declination

55° 89’ 211,
1237 50/ ;

1507 x"12

1987, B0 = 14 digits 83/,



78 KHANDAKHADYAKA

shadow ab
(8) To calculate the length of the hypotenuse of the

5 ghatikds after sunrise (stt;:nza 1&)0. -
The sun’s south declination = 4 : ;
the ‘sine’ of the ascensional d|ﬁeremlze
= 150 tan ¢ tan § = 67 15'.

As the sun is south of the equnb;)r,

— ‘sine’ sional difference . ]
- I;(I)I:’e gi'sie; = 1487 45' ; here this is the u.ntya.
;I-alf the day= 15 gh. —-23 bi-n. = }'4 %h..37 bin ;

time elapsed since sunrise = o s y
the hour angle = 9 gh. 87 bin.
= §77 bin.
= 3462 min. of arc.
Versed sine’ of 8462 = ?3;535, wor 52
i—R vers h = -
Now antgfa v h s
the required hypotenuse of the shadow

antyd x hypotenuse at noon
= 77 Tantya—R vers h

148* 45/ x 14 digits 32"

=TT 59

20897 10" _ 9g gigits 16/ ;
= TrEy b

.shadow = \/mf:fm
. e !
= 25 digits 7'.

(4) To find the time elapsed si

= 95 digi
f the gnomon = 2 > sun’e S .
tll)h? Sh:(‘i’o; ;5” the latitude of Kuruksetra 30° 15' 33" (sbanz
eing 4° , .
Here the antyd, as before = 143”. 4'5' ;32, .
the noon hypotenuse = 14 digits ;

the shadow = 25 digits 7/ ;

= V123%(2540)%

hadow
the hypotenuse of the sha 98 digits 16/ ;

Il

. r angle
the ‘versed sine’ of the hour ang antyd x 147 82
= antyd- — g 1gr

nce sunrise ab Kuruksetra,‘ wlfen
ts 7' : the sun’s south declination
?

CHAPTER 111 79
= antya (1-14782
IR A W T T )

187 34/

= 1487 4‘5’Xm=68 447’,
= Versed sine of 57° 18/ nearly;

the hour angle = 57° 18/= 3483/

572 binddis,

9 ghatikas 32 binadis,

Half the day = 14 ghatikas 87 binadis.

.'. the time elapsed since sunrise= J ghatikas 5 binddis.

il

1l

Here 5 bindadis is an error of calculation. No illustration of the
16th stanza appears to be necessary.

Precession of the Equinoxes.—In all caleulations at the time of
Prthidaka (786 Saka) no allowance was made for the shifting of the
equinoxes in finding the declination. However out of date and
incorrect may be the astronomical constants of the Khandakhadyaka,
still, should one use them now-a-days for any practical calculations,
one has to make allowance for the precession of the equinoxes. It
is therefore necessary to consider this topic here and to find out a
fairly accurate mean rate of precession.

The length of the year in the Khandakhiadyaka,

_ 1577017800 209907
= a.= 8—“_‘00 d.

4320000
= 36525875 da.
The mean length of the tropical year

= 365-24219879 da. (Newecomb)
The excess of the Khandakhadyaka year

= -01655121 da.
The sun’s motion in -01655121 days,

= 59/ 87-19x 01655121 days

= 587-72685 which should be taken as the mean value
of the precession for the Khapdakhadyaka year,

)

Taking the vernal equinox of the 421 of the Saka era (i.e.,
Aryabhata’s time) to be the beginning of the first point of Aswini
naksatra, at 800 of the Saka era the total precession would be

6° 407 597,
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Prthidaka at this time observed the value of the total‘precession .
to be 6° 80/, which must be considered as fairly accurate.*
" At the Saka year 1072, the total precession would be 10° 87" 1V
Bhaskars, in 1072 Saka year, observed it to be 11°, which als
must be considered as fairly accurate. t R
Again at 1851 of the Saka year the total amount of precession
would be=28° 19’ 80", E
Hence we can take 23° 19/ 80", to be the total amount of the

prec'ession at 1851 of the Saka era in our subsequent calculations - :
1 1 (1st half). The sun and the moon are made equal

relating to the present times. t of mi .
respect of minutes, etc., by being decreased or increased

It is perhaps not out of place to record here that the p res .
followers of Aryabhata, from Siiryadeva Jajvan’s time,. adopted the 3 “the result of interpolation from the ghatikas which show
valus of the precession at rith of a dogree, i.e- 59504 per year.l he.end of the tithi (i.e., opposition), whether elapsed or

come. ,

According to Mafijula (932 A.D.) the mean rate of precession is
about 6979 per year.§ According to Vignucandra @s quoted by
Prthiideka in his Comm. on the Brahmasphuta-siddhanta, X, 54
the mean annual rate of precession is 56/ 8288 per year.

The current Siddhantas which are of unknown origin and th
date of almost sll of which, must be after the time of Brahmagupta,

accept the mean rate to be 54/ per year.

CHAPTER IV

On Lunar Eclipses.

As ‘t.bis chapter relates to the lunar eclipse, we start with the
lation z.a,fter the Khandakhddyaka, of the total lunar eclipse on
rd APnl, 1931 A.D. The time according tc the Saka era is 1852
ynodic menths and 15 tithis. Hence the ahargana—462404'
Thursday the 2nd April at midnight at Ujjayini. o ’

;‘:e mean sun | = 11 signs 17° 9/ 27",
€ mean moon = 5 signs 17° 12/ 42",

‘This brings us to the end of Chaptef 111, relating to the
The sun’s apogee 2 signs 20° 0/ O,

three problems of the orient ecliptic point, the ghadow and the

local time. The moon’s apogee = 11 signs 4° 50/ 39 — 5/
= 11 signs 4° 50’ 34" ,
The sun’s mean anomaly = 8 signs 27° 9/ 27/ ;
, .. the sun’s equation = + 134’ sin 87° ¥/ 2’7"
) = 2° 13/ 50// . ’
- .. the sun’s apparent longitude = 11 signs 16° 23" 171
The moon’s mean anomaly =6 sig;s 120 227 87 ; .
s, the moon’s equation = + 206/ gin 12° 22’,8”
. = + 1°8/ 247, ,’
"', the moon’s apparent longitude = 5 signs 18° 1;5’ 6"
" The sun’s apparent daily motion = 59/ 8" + 20/ = 5'9’ 28"

<~ The moon’s apparent daily motion = 790’85/ + 67/ 9/ =857/ 44"

{;[’]:;se _are the apparent daily motions as calculated from the
3'4 ’p,ak.hadyaka; but if they are calculated from the rule of Brahma-
Whuta-siddhanta, I1, 41, they become respectively : — ’

Amardjs’s Commentary in Pandit Babua Miéra's edition, p. 108.
Grahaganita, Patadhikira, Comm. on 8-8.

Pa. ameswars's Conm, on Aryabhatiya, Kalakriyd, 10.
Bhéskara's Gola, 18.

The sun’s apparent daily motion. = 59/ 8" + 81"
= 59 39".

wn tt - %

11
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The moon’s apparent daily motion= 790/ 35" + 65’ 87",
= 856/ 12",
Here we a(.iopt these latter values.
’ Now, Moon == 5 signs 18° 16/ 6.
Sun = 11 signs 19° 23/ 177,
Difference = 5 signs 28° 52/ 40",
The required difference for opposition
= 6 signs 0° O/ 07 ;
the difference to be made up by the moon
=1° 711 = 67 11" ;
the ghatikas after which this will happen

_ 6711V x 60
T 856/ 127 — 597 301
= 5 ghatikas § binadis 2 bipalas ;

i.e., at this interval of titne after the mean midnight at Ujjayini,
the opposition will happen.
! it| i il be
The sun’s longityde at that tlme=wu e 10° 29 50"
The moon’s longitude will be = 5 signs 10° 28/ 30",

" The time of opposition in Ujjayini local time is thus 2 hours 2 r.nin.,
which in Calcutta local time is 2 hrs. 52 min. 83 secs. (the longitude
of Ujjayini = 75° 52/ east, and that of Calcut.ts.x 8?" 30 east); but
on that date the 8rd of April the instant of opposition is 2 hours a.m,,
Calcutia time. Thus there is here a difference of 52 min. 83 secs.

. Again at aha'rga;w 462404, the longitude of_ the 'uscending nf)d:
according to the Khandakhddyaka, with Prthadaka’s and Lalla’s
correction = 11 signs 22° 84/ 477 ;

Correction for 5 gh. § bin. = — 17 ;
the longitude of the ascending node at the instant of

.o

opposition = 11 signs 22° 84/ 30".
The moon’s longitude = 5 signs 19° 28/ 80/,
The sun’s longitude = 11 signs 19° 28/ 30".

1. (2nd half). Take the sine of the arc got by diminish-
ing he node, multiply it by 9 and divide by 5 ;
ing the moon by the node, multiply

* Talla speaks of a correction of —96’ to the node in every 250 years elapsed
from 421 of Saka era, the total correctién being taken at —8° for 5 integral cycles
of 250 years.

Wadiii dkude AV 83

the quotient taken as minuates is the celestial latitude of
the moon.

This has already been explained in Chapter 1. The rule is
equivalent to this {—

The moon’s celestinl latitude = 270/ sin (Moon-Node).

In the above exainple, Moon — Node
= 5 signs 26° 54/ 0" ;

.. the moon’s celestial lutitude at the ingtant of opposition
= 270/ sin 8° 6/ = 14/ 81/,

2. The sun and the moon’s apparent daily motions
respectively multiplied by 11 and 10, and divided by 20
and 247, are their apparent diameters in minutes. Multiply
their- apparent daily motions in minutes by 25 and 8 ; one
sixtieth of the difference of the results (of multiplication)
i8 the angular diameter of the shadow in minutes,

The first half of the stanza has already been explained in
Chapter I.  ¥rom this rule the apparent diameter of the maoon 4wt
the instant of opposition under consideration

10 x moon’s apparent daily motion

247

10 %856/ 127
247

- =341 407,

As lo the second part, we get from the Aryabhatiya, Gola, 39,
mterpreted in our own way that the diameter of the shadow

= 2 (moon’s horizontal parallax — sun’s semidiameter
+ sun’s horizontal parallax).

*

and hence it is

-9 ( Moon’s apparent daily motion

TS e r—— ¢

15

11 x sun’s apparent motion
40 T

N sun’s apparent motion )
R A
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by the 1st half of che stanza, and fro,m. the general vifaw of t.he
Hindu astronomers that horizontal parallax =5 the daily moftion
of a planet ; *
o, the Qiameter of the shadow )
8 x moon's appt. daily motion—sun’s appt. daily motion x 25 '
- 60

which proves the rule.
This stanza is almost the same as the 6th stanzu of the Brdahma-
sphuta-siddhanta, Chapter IV, |
We now calculate the diameter of the shadow for the eclipse
under our consideration.

8 x 856/ 12"65—()2§ x 59 89" _gor 18,

o Tbis=

”'3‘ (1st half). Subtract the moon’s latitude froni l{alf
the sum of the diameters of the obscured and obscuring
bodies ; the remainder represents the portion obscured by
the shadow or the obscuring body.

:,-4“ Here: tixe moon’s celestial latitude

= 14/ 317,

Moon’s diameter = 84/ 40",

Diameter of the shadow = 89' 18
Sum = 128 58" ;

- half = 61'59" ;

*. the portion obscured = 47'28", which is greater than the

méon’s diameter, hence this is a case of total eclipse.

.3 (Qﬁd half). If the obscured part i greaten: than
the obscured body itself, it is a case of total eclipse, if less,
a case of partial eclipse.

4, Take the sum and the difference of the semi-
diameters of the obscured and obscuring bodies ; from the
squares of the results, subtract the squares of the mogn’s
latitude; from the square roots of the results are obtal'ned
in the same manner as of tithis half durations of the eclipse
and of the total obscuration.

CHAPTER 1V 85

" In the present case, the sum of the semi-diameters
= B61' 89",
Their difference = 27 197,
The moon’s celestial latitude
= 14/ 317,
half duration of the eclipse by the rule
VO
856/ 19759 391 = X 60 ghatikas,
4539033 ghatikds
3 And balf duration of total obscuration
_ ¥ @7 NI (i [ 1my?
856/ 12 — 59/ 39"
= 174803 ghatikas.

T N e TS

x 60 ghatikds,

% Thus are obtained the first approximations to the two ends of
-these two phases of the eclipse. ‘The supposition here is that the
Effhoon’s orbit is parallel to the ecliptic. The successive approximations
¢ are carried out os shown below, but the rationale is not clearly

" The next step is to take up the beginning of the eclipse. »

s Now the half duration for the beginning of the eclipse
f=4'589088 ghatikas. -

The moon’s motion in this time = 64/ 55,

Motion of the node in this time = 147,

The moon’s longitude at this time = 5 signs 18° 23/ 857,

The node’s longitude at this time = 11 signs 22° 84/ 447,

The moon’s celestial latitude 2707 sin 4° 11’ 9",

}

= 19’ 427, _
The sum of the semi-diameters of the obscured and obscuring
bodies = 61/ 59",

Hence the balf duration for the beginning of the eclipse

_ ¥ (61 507)3 = (197 4972 o
850/ 127 — 507 897 x 60 ghatikas,

4'4268 ghatikas which represents the 2nd approzimation.
Again the moon’s motion in 44268 ghatikds
= 63/ 10/,
. The motion of the node in 4'4268 yhatikas
= 147,
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"The moon’s longitude at 44268 ghatikas before the opposition
= 5 signs 18° 25/ 20"

The node’s longitude = 11 signs 22° 84/ 44/.

The moon’s celestial latitude
= 270/ sin 4° 9 247,
= 19/ 84",

The sum of the semi-diameters
= 61/ 59/,

Hence tke half duration for the beginning of the eclipse

! N2 — ! mear
- V%f%%:%?.sgfrl % 60 ghatilsas,
4480015 ghatikds, which represents the 3rd approximation.
Again the moon’s motion in these 4°4300 ghatikas
= 63/ 13" ;
the node’s motion in the same time
= 14" ;
de at 4'430 ghalikas before the opposition
= 5 signs 18° 25/ 27" ;

1!

the moon's longitu

+, the moon’s celestial latitude
= 970/ x sin 4° 9" 27",

= 19' 847
as in the preceding approximation,

The Indian astronomer would
would begin at 448 ghatikds or 4 ghatikas

before the instant of opposition.
We now take up the calculation of the half du

end of the eclipse.
At 4588083 ghatikis after the instant of opposition—
the longitude of thé moon = 5 signs 20° 83' 25",
node = 11 signs 22° 34/ 16/,
. the moon’s celestial latitude= 270/ sin 2° 0' 517,
: = 9/ 297,

The sum of the semi-diameters
= 61’ 597,

Hence the half duration for the end of the eclipse

Iy 1 LR}

N (fiﬁl 8972 = (9 29") | 60 ghatikas,

- Y

856/ 12" — 59 39

= 4'618916 ghatikds, which represents the 2nd approxima-

tion.

thus uoncluae that this eclipse
25 binadis 48 bipalas,

ration for the

CEIAr 1IN QY .
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Azalo st 4:6139]0 ghatikas after the instunt of opposition
the longitude oi *hs monn = 5 signs 20° 34/ 207 ,

+ui che longitude of the aode = 11 signs 22° 84/ 15
The moon's o tu. din i tpritude= 270/ sin 2°, .
= O/ 25/,

Hanee Lhe vored spsroxmoat]

) o roxunation to the b i
<! the gehpge alf duration for the end
v il 59T g '25//)2
856/ 197 59 Bor

= x 60 ghatikas,
EGLis Frev ! it
- 8 gictike - D6 biaddis 58 bipalas.

| :s t(};us sgroes vary well with the result of the last step, accordin

¢} i aad O . i i ’

[ e ',nm,“ wh= time when the eclipse will end is to bi

akea o g w8 hraadis 58 bi i

e ‘ bipalas after the instant of
We now wke up the times of the beginning and of the end of

Vi Lo
the fstal chserrntiup

Hait the dure: = a5 She tot i
2 dur the total obscuratio i
foind oo bell T0%00 Wb ke " hes been pproimately
The ]{mgit,nde wi tbe moon at 1'74308 ghatikas he‘fore th
gstant o oppositiin = B signg 19° 8/ 38'; °

"hat of the aude = 11 signs 22° 84/ 86/ ;
nonn s oackestoo Jtude ab this time ,
= 270/ sin 8° 30/ 58"
= 16/ 32", ,
The difrerane: of hiii temi-diameters
— 27/ 191/.

Ho . . .
ence the hew durstion ior the beginning of the total obscuration

-V oy TR 187 32m)
SR D A0l 8O

x 60 ghatikas,

= 1‘(‘) NI “}"'4 Il', 3 ] 78’”888” 8 i [ 0 -
= 1 N ES) ..f itk ) w’”(]l i i t ,
e 8eco 7 1
i nd (lpp rma

A ol 188 s ghads i
T | ﬁﬁ g{mn__r.f.uu, preceding the instant of opposition—
the lonpitade «d the mzon = 5 signs 19° 4’ 57/
| " S node 11 signs 22° 84/ 35/
C e moon’s o betind wbiinde = 270/ sin 3° 20 88"
. ) = 16/ 297 ,
The differvnie o0 thei: Semi-diameters
= 27 19/,
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the half ducation fo. the

Hence the third approximation to
de

beginning of total obscuration
v @7 492 = (18 202 .
= e e T I
ARG 1OT=E B0 60 ghatikds,
1640803 ghatikds,
= 1 ghatika 88 binddis 27 bipalas.
Thus we are

next step will yield the same result. ;
ion will begin at 1 ghatika 88 binddis

Now the
to take that the total obscurat

97 bipalas before the instant of opposition. |
fnd the time when the total obscuration

n roughly found to be 174808 ghatikas atter
The longitude of the moon at this time -

We now pass on to
will end. This has bee
the instant of opposition.

“will be : .
= 5 signs 19° 65’ 23",

The longitude of the node = 11 signs 22° 84’ 24" 5

. the moon’s celestial Jatitude= 2707 sin 2° 41/ 2"=12""‘89".' '

The difference of the semi-diameters :
= 97 19/, v o«

Half duration for the end of total obscuration

e T ©
_ @IV TTIN® g ghag
= 5 1250 897 60 ghatikas,
1:8237 ghagikds. _
ude of the moon at 18237 g

]

Again the longit hatikds after th?

instant of opposition :
= 5 signs 19° 54’ 82",

= 11 signs 22° 84/ 24" ;

=, The moon’s colestial latitude= 270’ sin 2° 89 52,
= 12/ 86/,

and that of the node

The difference of the gemi-diameters
= 27 19",

Hence half duration for the end of the total obscuration

_ V@7 1072 — (12 86")* .
= T 856! 12/"—59 39" x 60 ghatikds,

= 1'82566 ghatikas,
= 1 ghatika 49 binddis 32 bipalas.

As the result of the next step will also be f,be
take that the total obscuration will endat 1 ¢

same we are to *
hatika 49 binadis

2? l;paécfz after the instant of opposition. According to the direction
_ rvhiidaka, we put down the time of opposibtion in 5 places (here

b lines) and u.tain the following instants : —

5 gh. f()) bin, 2 bip. — 4 gh. 25 bin. 48 bip.
= 0 gh, 39 bin. 14 bip., after midni ' inni
e ol midnight for beginning cf

5 gh. g bin. 2 bip. — 1 gh. 38 bin. 27 bip.

= 8 gh. 26 bin. 85 bip., A.M. for the b’ inni

| gh- 2 b eginning of the total
5 gh. & bin. 2 bip. — O gh. 0 bin. O bip.,

= 5 gh. 5 bin. 2 bip., A.M. for the instant of opposition

5 gh. 5 bin. 2 bip. + 1 gh, 49 bin. 32 bip
= 6 gh. 54 bin. 34 bi .
gh- ip., A.M. for the end of total obscura-

V. 5gh. 5 bin. 2 bip, + 4 gh. 86 bin. 53 bip.,
= 0 gh. 41 bin. 55 bip., A.M. for the end of the eclipse

;- In t;l;e;bov;{calculwtion of the lunar eclipse we have followed

orthodox Hindu method; if we follo by
: . ; w the modern m

_ culation with the old constants, will proceed as follows '—ethOd, he

The instant of opposition in Ujjayini mean time is 8rd April, 1931

.gh. 5 bin. 2 bip. A.M, At this time—

The longitude of the moon = 5 signs 19° 28’ 30"
"i‘hat of th’e node . 11 signs 22° 34/ 307

he moon’s celestial latitude = 14' 817=871/ .
The moon’s diameter = 34! 407 '
The diameter of the shadow = 89’ 18"
The sum of the semi-diameters

’ = 681/ 59" =3719/,
The moon’s motion per ghatikd= 856/°2
¢ The rate of change of moon’s celestial latitude per ghatika
= - 6733, '

The sun’s motion in longitude per ghatika
= 5965,

Now 8, the distance between the centres of the moon and of th
5

. '?limdow after ‘t’ ghatikds is given by the equation

82 = {(856/"% ~ 59""65)t}2 + {871/ — 67733 x 1} 2
12



Now put (1) =8719", the sum of the semi-diameters,
87198 = (796°551)2 + (871 ~ 67°33t)2,

634045388412 — 117288°86t —18072820= 0;
t,= —4-446 ghatikdas= —4 ghatikas 27 binadis which by

e
or

the method of Indian astronomers worked out tob

e —4:h. 26 bin.

t,= +4'63 ghetikas=4 ghatikas 38 binadif nearly, which

by the Indian method came out to be 4 ghatikas 87 bir_uidis nearly.
Again (II) put §=27' 19" =1639", which is the difference of the

semi-diameters.,

The equation now becomes:
634045-883412 — 11728886t —1927680=0,

" s t;=—1'652 ghatikis, =—1 ghatika 89 binadis which by

the Indian method came out to be —1 ghatika 38 binadis.

Also,

Indian method worked out to be 1 ghatika 49 binadis.
Hence when the constants are the same, the Hindu method
though rather tedious leads to almost the same results as the
modern method.
The results of the calculation by the Indian method may be
shown in & tabular form as follows :—

to= +1'8878 ghatikis=1 ghatika 50 binddis, which by the

Phenomens

Ujjayini local
time (calculated)

Calcutta local

S

Greenwich mean

time (calculated) | time (calculated)

G, M. T. as in
Oonn. des Temps

Beginning of
the Eclipse.

Beginning of
the totality.-

Ipstant of
opposition.

End of
totality.

End of the
Eclipse.

0 h. 16 min.
"1 h, 23 min.

2 hrs. 2 min.
2 hrs. 46 min.

Bhrs, 53 min.

1 h. 6 min.

2 hrs, 13 min,

30 sec.

30 sec.

19 hrs. 12 min.

20 hrs. 19 min.

2 hs. 52 min. 20 hrs, 58 min.
30 sec.

8 hrs. 86 min. | 21 hrs, 43 min,
30 sec.

4 hrs. 48 min. | 22 hrs. 49 min.
30 sec.

18 hrs. 23 min.
2 sec.

19 hrs. 22 min.
3 sec.

20 hrs. T min.
4 sec.

20 hrs. 52 min.
6 sec.

21 hrs, 51 min.
7 sec.

The Khandakhadyaks constants thus bring in all the above
phases of the eclipse by about 50 minutes later than the actual

times,

5. The apparent daily motion whether of the sun or of
the moon divided by 60 and- multiplied by the half-durations

of the eclipse or of the total obscuration must be repeatedly
applied, negatively for the beginning and positively for the
end. Asto the pata, or the node, the corrections are to
be applied in the reverse order.

The motion of the node is retrograde, hence in its interpolation
for a preceding time the correction is to be applied positively and
for a subsequent time it is to be applied negatively.
described in this stanza have already been illustrated.

The processes

6. Irom the half duration of the eclipse, whether of
the beginning or of the end, subtract the desired time

~ after which or before which the phase is wanted ; by means

of that time find the minutes of arc gained by the moon

_ and also the moon’s celestial latitude : by the square root
~of the sum of their squares lessen the sum of the semi-

diameters, the result represents the obscured portion. In
the middle of the eclipse the same is obtained by diminish-
ing the sum of the semi-diameters by the moon’s celestial
latitude. .

Illustration.—Suppose the phase is wanted at 1 ghatikd after
the beginning of the eclipse. Here the half-duration of the eclipse
as found in the previous calculation

=4 ghatikas 25 binddis 48 bipalas.
Now 4 ghatikas 25 binadis 48 bipalas—1 ghatikd =3 ghatikas 25 binadis
48 bipalas, represents the time preceding the instant of opposition,
at which the phase is wanted.

The moon will be behind the centre of the shadow by
B gh. 25 bin. 48 bip. {856/ 12/ — 59/ 39") .
. L 1

60 gh.
The longitude of the moon at that time
=5 signs 18° 89 42",
That of the node=11 signs 22° 34/ 417 ;

.e., by 45/ 241 ;

',*. the moon’s celestinl latitude

=970/ gin 8° 55 17,
=18/ 26/,



Now v (@5 24/)2 1 (1872672 =48’ 54", which is the distance
between the centres of the moon and the shadow.

.

The sum of the semi-diameters
=81’ 5O ;
. the minutes of arc of the moon’s dise. eclipsed
=61 591 — 48/ 54/ =13/ 5.

By the conﬁerse of the above process the time for a required
phase of thececlipse may be calculated.

+7. Multiply the ‘sine’ of the hour angle by the
‘gine’ of the latitude and divide by the radius ; the
degrees of the arc of which this quotient is the ‘sine,” are to
be taken as of north and south denominations according
as the obscured body lies on the eastern or the western half
of the celestial sphere: by the sum or the difference of
these degrees and the degrees of the declination of the
obscured, increased by 8 signs or 90°, according as they
are of the same or opposite denominations is obtained the
variafion of the eastward direction of the ecliptic from the
eastward direction of the disc of the obscured body.

This stanza gives the rule for calculating the Valana, or the
variation of the eastward direction of the.ecliptic from the eastward
direction of the obscured hody. The rule itself is identical with
that of the Aryabhatiya, Gola, 45, B.S. Siddhanta, IV, 16-18, Sdrya-
Siddhanta, IV, 24-25. Most accurate rules were first given by
Bhaskara 11, Gola, VIII, 80-74, and the commentary thereon. See
also Papers on Hindu Mathematics and Astronomy, Valana, by
the translator. '

The rough rule given here is being illustrated. At the instant
of opposition, at 5 ghatikds 5 binadis. 2 bipalas of mean time the
hour angle of the mean sun equals 24 ghatikas 54 binadis 58 bipalas.

Now the apparent sun is ahead of the mean sun on the ecliptic by
the equation of the centre, viz., 2° 18/ 50/, i.e., by 22 bin. 18 bip.
Hence the apparent sun’s hour-angle=24 gh. 54 bin, 58 bip.+
22 bin. 18 bip. )

Therefore the maon’s hour angle
= 5 gh. 5 bin. 2 bip,—22 bin. 18 bip.
4 gh, 42 bin. 44 bip.
. = 28° 16/ 24" West at Ujjayini.
At Calcutta this will be
= 28° 16/24/"+12° 38
= 40° 64/ 24"’ West.
Now the moon’s longitude at the instant of conjunction from the
vernal equinoctial point
= total precession at 1853 Saka year
+ 5 signs 19° 28’ 307
23° 21/ 20"+ 5 signs 19° 28’ 30/
= 6 signs 12° 49/ 57/,
Therefore, moon+90° =9 signs 12° 49’ 57/
Hence declination of (moon + 90°)
= —gin~! (sin 24° xsin 77° 10/ 3")
= 238° 22/ South nearly.
Again at Calcutta the latitude is 22° 35/ ;
hence the first part of Valana
= gin~! (sin 40° 54/ 24" x sin 22° 85)
= 14° 34/ South ;
the total variation of the east of the ecliptic

= 14° 84/ +23° 22/= 87° 56/ south from the east of
the disc of the moon.

Note.—Aryabhata, Varahamihira, Brahmagupta and all Indian
astronomers before the time of Sripati (1028 A.D.), could not
discover the part of the equation of time due to the obliquity of the
ecliptic, or that the uniform measure of the ahargana could only be
got by the mean sun moving uniformly with the sun’s mean- rate
not along the ecliptic but along the equator.

Prthadaka ends his commentary on this chapter by promising to
explain what to do with this Valana, in the projection of eclipses in
his exposition of the supplementary part of th¢ Khandakhadyaka.
But the manuscripts at our disposal give only the beginning of this
supplementary part and it is not possible to say if he fulfilled his

promise. As to the projection of the eclipses see Sirya-siddhdnta,
VI, Burgess’ Translation.

This brings us to the end of Chapter 1V. of the Khandakhddyaka,
which relates to the Lunar Bclipses. . |



CHAPTER V
On Solar Eclipses.

As this chapter treats of the eclipses of the sun we proceed,
acoordin‘g to the Khapdakhddyaka constants, with the calculation
of the solar eclipse on the 9th May, 1929, or the Saka era 1851, one
synodic month ; the day of the week being Thursday. The station
is Calcutta, the longitude of which is 88° 80’ E. and the latitude
22° 86’ N. .

Here the ahargana=461711 at the mean midnight at Ujjayini
(Ojein ; long, 76° 52/ E., and lat. 23° 11/ N.) on this Thursday.

0 sign 24° 8' 6",
The mean moon 1 sign 5° 59 46/,
The sun’s apogee 2 signs 20°, .
The moon’s apogee = 8 signs 17° 51/ 85/,

The mean sun

I

Now, mean moon—mean sun=11° 51/ 40" ; hence the true
instant of conjunction cannot be calculated by using the apparent
positions at midnight. We take the mean longitudes for the
preceding mean midday at Ujjayini, which were:—

The mean sun . = 0 sign 23° 88’ 82".
The mean-moon = 0 sign 20° 24/ 287,
The sun’s apogee 2 signs 20°.
The moon’s apogee 8 signs 17° 4% 16",
Now, the sun’s equation + 184/ gin 568° 21/ 277,
' +1° 51/ 847,
0 sign 25° 80/ 6.

I

I

", the apparent sun

The moon's equation . = —296' sin 48° 28’ 47/,
J = —3°41 20" ;
». the apparent moon = 0 sign 25° 43’ 8.

Thus the instant of conjunction was already over at the mean
‘midday, the moon having gained 13/ 2" over the sun.

Now, the moon’s apparent instantaneous daily motion

789 649 x 147 x 81 _ gaey sour
214 x 360

=790' 85/ +

The sun’s apparent instantaneous daily motion

59 87 x 113 x 14
=5H09/ 8" =" eI N T =871 ",
898 214 x 860 87 85
The difference of their daily motions
=779 12/ =46742",

Hence the instant of conjunetion

_ oo 18/ 217%x 80 e
=Mean moon at Ujjayini —AGTagi ghatikas.

= Ujjayini mean moon—1-00381 ghatikds.

=11 hrs, 35 min. 54 secs. A.M. of Ujjayini mean time.
=12 hrs, 26 min. 26 secs. A.M. of Calecutta mean time.

=6 hrs. 82 min. 28 secs. a.M. of G. M. T.

The true instant of conjunction as given in the Conn. des Temps,
1929, page 52 i3 6 hrs, Tmin. G. M. T. Thus there is an ertor of
25 min, in the calculated instant of conjunction.

The sun’s longitude at the calculated instant

=0 sign 25° 29/ 8", which is also the longitude of the moon.

The longitude of the node at the same instant with Prthiidaks

and Lalla’s correction
=0 sign 29° 19’ 30",
The total shifting of the equinoxes from 431 to 1851 of the Saka
era and one synodic month
=23° 16/ 7,
Hence the longitude of the sun from the true equinox of date
=48° 45/ 15/,
The sun’s declination accordingly
=8in"! (sin 24° x sin 48° 45/ 15")
=17° 48/ 27/,

The hour angle of the mean sun (i.e., the mean sun on the
acliptic according to the early Hindu astronomers) at the instant of
sonjunction = O hr, 26 min, 26 secs, W.
6° 86’ 30" West,
sun’s equation = 1° 51/ 34/ ;

Il

hence the apparent sun’s hour angle = 4° 44’ 507 W,

0°gh. 47 bin. 29-33 bip,
22° 356’ N.

17° 48/ 2T N, ;

I

The latitude of Caleutta
The sun’s declination

#



*. the length of half the day at Calcutta

= 16 gh. 16 bin. 46 bip.
The time elapsed since sunrise = 17 gh. 4 bin. 15'83 bip.
It is now necessary to find the long. de of the orient ecliptic

point and we need to determine the time du fions for the risings of
the different signs of the zodiac ab Calcuv. ), which are worked

out below :(—
Durations in Tab. difference Durations in
1 gsus for the |in asus of ascen-| asus for the Bigns
Sigos risings on sional differences| risings of signs
Equator at Caloutta at Calcutta
Aries 1669 -297 1372 Pisces
Taurus 1794 —243 1551 Aquaris
Gemini 1937 =100 1837 Capricorn
Cancer 1987 +100 2037 Bagittarius
T.eo 1794 +9243 2037 Beorpio
Virgo 1669 +297 1966 Libra

= 48° 45' 15"
= 1 sign 18° 45’ 16" ;

“TPhe sun’s longitude

.. the residue of two signs = 11° 14/ 45" ;
11° 14/ 45" x 1551 asus
this rises in ‘ 500 ,

=581-41 gsus ;
1837 asus ;
2037 asus.
Total = 445541 asus. o
= 17 gh. 4 bin. 29-33 bipalas.
= 614553 asus.

Gemini rises in
Cancer rises in
Time elapsed since sunrise
Time elapsed of the rising of Leo

= 169012 asus,

1690-12 x 30°
which corresponds to . 8T

= 24° 53/ 29" gees. of Leo.,

.*. the longitude of the orient ecliptic point
= 144° 53’ 297,

The longitude of the nonagesimal
= 54° 53/ 29/,
The declination of the nonagesimal
= 19° 26/ 5,
Again, moon-node, at the instant of conjunction
= 11 signs 26° 9’ 88" ;
.". the moon’s celestial latitude= —270' sin 3° 50’ 22"
= —18/ 47,
20 '
= 31/ 51-25".

The moon’s diameter — 836’ 57" x 10

547
= 88/ 5808,
It is now necessary to colleet all the elements found, before
we proceed any further.
(1) The instant of conjunction in Cal. M. T.
= 12 hrs. 26 min. 26/,
(2) The sun's longitude at conjunetion
= 0 sign 25° 29’ 8",
(8) The total shifting of the equinoctial point from 421 of Saka
era (i.e., 499 A.D.) till date of eclipse

= 23° 16’ 7" according to the
Khandakhadyaka year.

The sun’s diameter =

(4) Bun’s longitude from true equinox
= 48° 45 15",
(5) Sun's declination = 17° 48' 271,
(6) Sun’s hoai-& gle = 0 gh. 47 bin. 29-33 bip.
(7) Length of tha'day at Calcutta
= 16 gh. 16 bin. &6 bip.

(8) Time elapsed since sunrise= 17 gh. 4 bin. 15'38 bip.
(9) Longitude of the orient ecliptic point
= 144° 53/ 29/,
(10} Longitude of the nonagesimal
= 54° 53/ 29/,
(11) Declination of the nonagesimal
= 19° 26! 5,
13
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(12) The node’s longitude = 0 sign 29° 19’ 80",
(18) The moon’s celestial latitude - = —18'4"1,

(14) The sun’s apparent daily motion = §7' 55/,

(15) The moon's apparent daily motion = 886/ 57",

(16) The sun’s appa}genb diameter 81/ 51-25",

(17) The moon’s ., " = 83/ 53-08".

(18) The latitude of the station ) = 922° 85' N.

]

We are now in a position to consider the first two stanzas of this
chapter, which relate to the parallactic shifting of the instant
of conjunction.

1-9. TFrom three signs (i.e., 90°) deduct the sum or
difference (i.e., algebraic sum) of the declination of the
nonagesimal, the moon’s celestial latitude and the latitude
of the station (which is always taken,— in the northern
hemisphere) ; the ‘sine’ of the remainder is the divisor
of the square of half the radius ; by this quotient divide the
‘sine’ of the arc between the nonagesimal and the sun ;
apply the result, after repeated operations, taken as ghatikas
which represents the parallactic shifting—to the instant of
conjunction, negatively when the sun ig greater than the
nonagesimal ; and positively when the sun is less than the
nonagesimal.

The idea is to find the apparent instant of conjunction at the
place of the observer. At the instant of conjunction the sun, the
moon (with no celestial latitude) and the centre of the earth are in
the same straight line. At the place of the observer, t}]e moon is
depressed from the straight line joining the observer and the sun,
by the angle which is equal to the difference between the parallaxes
of the sun and of the moon. The projection of this depression on
the ecliptic measures the shifting of the moon from the-sun in
longitude, and its projection perpendicular to the ecliptic, the
app;tent change in the - celestial latitude. If this shifting in
longitude is ahead of the sun, the apparent instant of conjunction is
over; if it be behind the sun the conjunction is to come. The above
stanzas teach us how to find this time by which the apparent
conjunction is over or is to cone,

All Indian agtronomers from the time of Brahmagupta take the
horizontal parallax of a planet =2 of its daily motion in longitude.
If n' and n be the apparent daily motions of the moon and the sun,
then the depression of the moon from the sun=-%(n'—n) in the
vertical circle, if at the instant of conjunction both the sun and the
moon be on the horizon. If in addition the ecfiptic be vertical then
5 (n'—n) is the deflection in longitude of the moon from the sun,
5 (n'—n) x 60

(n'—n)
is this 4 ghatikas, which occurs in the equation for the apparent
instant of conjunction at the place of the observer.

Let ® stand for the sun’s longitude, N for that of the
nonagesimal, Z/ the zenith distance of the nonagesimal; then the
import of the stanzas may be expressed symbolically thus :—

which is made up by the moon in or 4 ghatikas. It

Z'=declination of the nonagesimal +latitude of the moon + lavi-
tude of the station, the latitude of the station being always
called south (or—) in the northern hemisphere.

The equation of apparent conjunction

R sin (® -
EeinlOD haginas

4F sin (90° —2Z)

_4 Rocos Z' x Esin (®@—N)
RI

ghatikas.

The truth of this equation is seen thus:—

In the following figure, let PZH be the observer’s meridian,
HEA the horizon, AQN the
ecliptic, N the nonagesimal, S8/
the deflection of the moon from
the sun; then S8 = (r,—x,)
I sin Z8

R
denote the horizontal parallaxes
of the moon and the sun respec-
tively, Z the zenith of the
observer. From 8! and Z draw
8'Q and ZN perpendicular to the ecliptic. et the secondaries to the
ecliptic at N and 8 meet at its pole IT, '

, where #,, and =,




Now 8@ 85! %

B cos 15¢)
R.

R sin ZS R cus S’SQ

= (mpmr)x RIS o
“Again sin NS * = tan ZN xcot 8'8Q,
also sin ZN = sin ZS xsin S8'8Q,
*, sin NS xcos ZN = gin ZS cos 8/SQ.
B NS R cos ZN
AN SQ = (ﬂ'm—“a) Bln ;;, CO

This deflection SQ is made up by the moon in

R sin NS x B cos ZN

4 x B

ghatikds.

R sin (® ~N)x E cos 2/

7 ghatikas, (1)

or 4x

Again 8'Q, the deflection in latitude

. R gin Z8 R sin S'SQ
=5(n/—n) x Bl; X B

=y (n!—n) x 280 2N R 31;12 ZN

_ﬁ(n' n) x B 8in & R sm St ] (@

For the rlgld Indian method of working out the above equations,
the reader is referred to the translator’s paper ‘*Parallax in Hindu
‘Astronomy *’ published in the Report of the Indian Association for the
Cultivation of Science, Calcutta, for the year 1916, page 15.

Iustration.—In the calculation of the proposed solar eclipse
at Calcutta on the 9th May, 1929, we have found that the declination
of the nondgesimal =19° 26/ 5/, the latitude of the station= —22° 85/,
a'nd the moon’s celestial latitude= —18' 4%,

o Z1= =89 26 59/,,@® —N=6° 8/ 147 ;
¢, the equation of apparent conjunction
=4 cos 8° 26/ 59" x sin 6° 8/ 14"
. =-426863 ghatikds.
== 15367 asus,

(i) Again the sun’s motion in 4206863 ghatikds

= 25/,
The sun’s longitude from true equinox= 48° 45/ 40",
Time elapsed of the day 6229-20 asus.
Longitude of the orient ecliptic point = 147° 9/ 35/

. » »» nonagesimal = §T7° 9/ 351,
Declination of the v = 19° 58/ 57/,
Moon’s motion in "426863 ghatikds = 0° 5! 517,

Moon’s long. at -426863 gh. after conj.= 0 sign 25° 85' 5",
Longitude of the node 0 sign 29° 19’ 29/1,
Moon's celestial latitude = 270/ gin 3° 44f 24/1=

—=17 87,

I

Zl=—2° 531 40" ; ® —N —8° 28/ 557,

The equation of apparent conjunction = 4 cos 2° 53’ 40/
x gin 8° 28! 55/,

-5885 ghatikas

or 21006 asus,

which represents the second approximation.

(1)) Again at 6835 ghatikas after the instant of conjunction :—
The sun’s longitude 0 sign 25° 297 42/,

» moon’s ,, 0 sign 25° 87 157,

,» node’s ve 0 éign 29° 19/ 28,
The moon’s celestial latitude —270! sin 3° 427 18",
—171 26"
6855'59 asys,
148° 7/ 491,

I

I

Time elapsed since sunrise
Longitude of the orient ecliptic point

" » 1 Donagesimal = 58° T/ 491,
Declination of the ’e = 20° 12/ 26/
Zl= —2°40"; ®—N = —9° 29/,
The equation of apparent conjunction = 4 cos 2° 40/ x sin 9° 22/
= 650808 ghatikas.

= 284-11 asus, which

represents the third approximation.

(iv) Again at -650808 ghatikas after the instant of conjunction :—

The sun’s longitude = 0 sign 25° 297 46/,
,, moon’s - = 0 sign 25° 88 16/,
,» node’s ,, = 0 gign 20° 19/ 28",

,» moon’s celestial latitude = —270/ sin 8° 41/ 12",
. = —17 21/,



The sun’s longitude from true equinox= 48° 46/ 53/,

Time elapsed since sunrise = 6379-64 asus.
The long. of the orient ecliptic point = 148° 20/ 50'%.
The long. of the nonagesimal = 58° 20' 50".
_The declination of the nonagesimal = 20° 15’ 25",

© M= 2086/ 667 ; @ —N= —9° 34/ 57"
The equation of apparent conjunction = 4 cos 2° 36/ 56/ x
v sin 9° 84/ 57/
665178 ghatikas,
23946 dsus,

i

which represents the 4th approximation.

(v) , Again ab "665178 ghatikas after the instant of conjunction :—

The sun’s longitude = 0 sign 25° 20/ 47/,
The moon’s ,, = 0 sign 25° 88" 25,
The node’s = , == 0 gign 29° 10/ 28/,

-17 211,
638499 asus.

The moon’s celestial latitude
Time elapsed since sunrise

Sun’s longasfrom true equinox = 48° 45/ 54/,
Long. of the orient ecliptic point = 148° 88/ 6591,
w1 s nDonagesimal = 58° 33/ 39",
Declination of the nonagesimal = 20° 18 247,

2= —2° 88/ 57" ; @ —~N= —9° 48/ &/,
" The equation of apparent conjunction = °6802508 ghatikds, which
represents the 5th approximation.

(vi) Again at "6802508 ghatikds after the instant of conjune-

tion :— .

The sun's longitude = 0 sign 25° 29/ 47",
,, moon’s ,, = ( sign 25° 38/ 87",
,, mode’s ’ = 0 sign 29° 19’ 28",

moon's celestial latitude = =17 20/,

1
Time elapsed since sunrise 689042 asus.
The sun’s longitude from true equinox= 48° 45’ 54",
Lonéitude of the orient ecliptic point = 148° 80/ 20/,

"~ ,, ™, , nonagesimal = 58° 80’ 20",
Declination of the " = 20° 17’ 383",
1= —2° 84/ 49" ; ® ~N= —9° 44/ 26",

The equation of apparent conjunction = ‘676063 ghatikds,
= 24888 asus,

which represents the sixth approximation.

(vii) Again at 678003 ghatikas after the instant of conjune-
tion : — . ‘ '

0 sign 25° 29/ 477,

The sun’s longitude

»» Dmoon’s ,, = 0 sign 25° 38/ 34/,
» node’s = 0 sign 29° 19/ 28",
»» Mmoon’s celestial latitude = =17 201,

Time elapsed since sunrise = 638891 asus,

The sun's long. from true equinox = 48° 45/ 54/,

The long. of the orient ecliptic point = 148° 29’ 87,

The longitude of the nonagesimal = 58° 29’ 3,

The declination of the " = 20° 17 17",

Z'=—2°385'8"; @—-N=—9°48 9,
The equation of apparent conjunction = *674597 ghatikds
= 242'85 asus,
which represents the seventh approximation.

»

(viii) Again at ‘674597 ghatikds after the instant of conjunc-
tion : —

The longitude of the sun = 0 sign 25° 29/ 4711,
" " 1, INOOD = 0 sign 25° 38/ 38/,
. Y +» »» mnode = 0 sign 29° 19/ 28",

The moon’s celestial latitude = —17/ 20", N

Time elapsed since sunrise = (38838 asus.

Sun’s long. from true equinox = 48° 45' 54/,

Long. of the orient ecliptic point = 148° 297 28/,

v »n , Donagesimal = 58° 29/ 28/,

Declination of " = 20° 17 22/,

Z'=—2° 34' 58" ; @ —N=—9° 48' 34/, -
The equation of apparent conjunction = *675068 ghatikas,
= 24304 asus,
which represents the eighth approximation.

As the result of this approximation is almost the same as the
previous one, the Indian astronomer would now take that the
apparent instant of conjunction is ‘675088 ghatikds or 243°04 asus
after the geocentric conjunction. At this time of apparent conjunc-
tion : —

The longitude of the sun = 0 sign 25° 29/ 471,
' " by 1 IMoOON = 0 sign 25° 38/ 33",
’ » ¥ 0y node =0 Bign 29° 19/ 28",

The moon’s celestial latitude = =17 20,



Sun’s long. from true equinox = 48° 45/ 547,
Time elapsed since sunrise 6388°58 asus.
Long. of the orient ecliptic point 148° 297 21/,

s+ 1 »» nDonagesimal 58° 29/ 217,
Declination of the nonagesimal = 20° 17/ 21/,
Z!=—2° 84 597; @ —N= —9° 43/ 27"

i

I

Thus in Caleutta mean time, the instant of apparent conjunction
(which is taken as the middle of the eclipse) is at 12 hrs, 42 min,
88 secs.

8.4, The ‘sine’ of the degrees of the sum or difference
(i.e., Z') multiplied by 18 and divided by 40 is the avanati
or parallax in latitude; find the celestial latitude from the
moon for the instant of apparent conjunction : the sum or
difference according as they are of the same or different
directions, of the parallax in latitude and the moon’s
celestial latitude, is the apparent celestial latitude. Then
find the half durations in ghatikds, both of the eclipse and
of the totality as in the case of a lunar eclipse.

The parallax in latitude is here given as

= 18 150 sin Z', and has been proved to be

40

. n-n X'R gin 2/
= 16 R

Now the average value of #'=790/ 85", and of n=>59" 8, and
=150,

n'-n 1 _ 781115 _ 14623’
715 TR T 15x50 45000

1 1 11 1 .
- 8 + 12 + 1 + 13 + 7 + ........................ r]
Brahmagupta takes here the third convergent, viz.,
18/
40"

Illustration,—In this particular solar eclipse at Calcutta, we have
found before that—

7' = —2° 34 691 ;

parallax in latitude= -—;g x 150 sin 2° 34/ 39"

= =2/ 11/,
The moon’s celestial latibude = —17/ 207 ;
the moon’'s apparent celestial latitude at the instant of
apparent conjunction = — 19/ 31",

Now the sun’s diameter = 31/ 517,

the moon’s diameter = 38’ 58/,
.. the sum of the semidiameters = 32/ 52",
The portion of the sun obscured = 13 217

(.. the magnitude of the eclipse according to Hindu astronomers.
=410).

Hence the half duration of the eclipse
V(2 52 =19 517
836/ 57" 57" 551

= 2'03663 ghatikas,

which represents the first approximation.

x 60 gh.

Now taking the moon’s parallax in latibude to be c onstant for the
entire duration of the eclipse, we are to carry on the successive
approximations to (a) the half duration for the beginning and also
to (b) the half durations for the end of the eclipse. The processes
of successive approximations are here contracted by the modern
process as shown in the previous chapter thus: —

Here the rate of increase of the moon’s celestial latitude,
= 65'""185 per ghatika.
The rate of increase of the sun’s longitude,
= 57192 per ghatikad.
The rate of increase of the moon’s longitude,
= 886"°95 per ghatika.

Let t ghatikds be the time in which the distance between the
centres of the sun and the moon becomes equal to the sum of their
semidiameters, which is here 32/ 52/ ;

14
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*, (827 52M = (779708 x t)* + (— 1Y 31” + 657 10t)*,

152674'08 + +/(152674'08)* +4 x 611187477 x 2517543

S b= 2x 611137477

= 2°15674 gh. or —1'90881 gh., the first of which is the half
duration for the end of the eclipse and the second, the half duration
for the beginning of the eclipse. )

5-6, Again from the time of the middle of the eclipse,
increased br decreased by the half duration of the eclipse or
total obscuration, find by ‘repeated process’.-as before the
parallax in longitude in time; increase the corresponding
half duration by its excess -over the parallax in longitude
for the middle; the result will be the corrected half
duration. Similarly is found a half duration of total
‘obscuration, As when the sun is greater than the
nonagesimal, the sine of the arc between (divided by the
cheda or divisor) is the parallax in longitude, its denomina-
tion is then negative, so it is positive in the reverse case.
‘In this way when the parallaxes for the beginning and the
middle are both positive or both negative, and that for the
beginning is less, the half duration is decreased ; if
of different signs tlie same is increased by their sum.
" Qimilar is the rule for the end of the eclipse or of total
“obscuration.”

The rule does not appear to be sufficiently clear. Let C denote
the time for the instant of geocentric conjunction, and =, my and
74 denote the parallaxes in longitude, expressed in time for the
beginning, middle and the end of the eclipse and let D, and
Dy be the half durations for the beginning end the end of the
eclipse, then—

Time for the beginning of the eclipse = C-D,inm
Time for the middle of the eclipse = C4tmy
L w w omoend T, . = C+Dgy+ns,
"'+ apparent half duration for the beginning
of the eclipse = D tmaFmy;

apparent half duration for the end of the eclipse= Dy tmgFmg.

(¢) Hence if 7y, 75 and 3 are all positive, D, is increased and
Dy is decreased if 1y < m,, and 7y < m,.

(b) 1If =, my, and =3 are all = D, is decreased and D, is
increased.

(¢) Ttmyis+,andm is —, 75is +, D, becomes D, +nmy+m,
and Dg becomes D, + 73 +m,, etc., ete.
All these rules cannot be combined in any one single rule.
. Illustration.—In this particular eclipse the Calcutta mean. time
for the middle of the eclipse has been found before to be—

12 hrs. 42 min. 88 secs.
or, 638858 asus elapsed since sunrise.
Half duration for the beginning of the eclipse,
1'90881 ghatikas.
68717 asus,

() Now at 190881 ghatikds before the instant of apparent
conjunction—

The sun's longitude = 0 sign 25° 27/ 56/,
The moon’s longitude = 0 sign 25° 11’ 58",
‘The node’s longitude = 0 sign 25° 19’ 84/,
The moon’s celestial latitude = —19/ 241, ‘
Longitude of sun from true equinox = 48° 44’ 3»,
Time elapsed since sunrise = 570141 asus.
Longitude of the orient ecliptic point = 188° 21/ 2/
Longitude of the nonagesimal = 48° 207 2,
Declination of the nonagesimal = 17° 41/ 197,

Z'= —5°19 5 ; ®—-N= 24/ 17,
.". the corresponding parallax = —4 eos 5° 13/ 51

: x sin 28/ 55" gh.

= — 02771 ghatikas,
Now parallax in longitude for the middle of the eclipse,
= + 675068 ghatikas;
.'. the corrected half duration for the beginning of the eclipse
= 2'61159 ghatikas.
= 82017 asus,
(il Again at 2 ()1159 ghatzkas before the instant of apparent
conjunction—
The sun’s longitude = 0 sign 25° 27/ 161,
The moon’s longitude .= 0 sign 25° 2/ 71,



The node's longitude = 0 sign 207 19 84/ Long. of the nonagesimul = 42° 57 A8,

The moon’s celestial latitude = =200 12V, Declination of the nonagesimal = 16° §' 27"
" Long. of the sun from true equinox = 48° 43/ 23/. Zi= —° 50 5" ®~N= 5° 45" 12",
Time elapsed since sunrise = 556841 asus, The corresponding parallax = —-39815 ghatikas;
Long. of the orient ecliptic point = 136° 22/ 5 .*. the next approximation to the half duration for the beginning
Long. of the nonagesimal = 46° 22' 5/, of the eclipse = 2'98208 ghatikas.
Declination of the nonagesimal . = 17> 7 16", . = 107353 asus.
2= -5° 4T 80" ; ©-N=2° 21" 187; - (v) Again at 2'08208 ghatikds before the instant of apparent
.. the corresponding parallax o : - '.1635f6 gF;;;‘.zk(lt)s; o conjunction—
. v imation to the half duration for the beginning .
i,' th?'ne)b PPproYImETOR T M = 27474 ghtikas ; The longitude of the sun = 0 sign 23° 26/ 54",
of the eclipse, = 98908 am;s The longitude of the moon = 0 sign 24° 56/ 57/,
- ’ ''he longitude of the node = 0 sign 29° 19/ 877,
(iii) Again at 2:7474 ghatikas before the instant of apparent The moon’s celestial latitude = —~90' 37,
conjunction— Long. of the sun from true equinox = 48° 48/ 17,
The longitude of the sun = 0 sign 25° 27/ 8", Time elapsed since sunrise = §315°05 asus.
The loniitude of the moon = 0 sign 25° 0" 147, Long. of the orient ecliptic point = 132° 87/ 1/,
The longitude of the node = 0 sign 29° 1% 37", Long. of the nonagesimal = 42° 37 1/,
The moon’s celestial latitude = =20/ 217, Declination of the nonagesimal = 15° 50/ 9!
Long. of the sun from true equinox = 48° 43/ 157, 2= "6.° 56/ 28" ; . @©@~—N= 6°6/0". '
Time elapsed since sunrise = 539950 asus The corresponding parallax in long. = '39566 ghatikds.
i = . . :
Long. of the orient ecliptic point = 133° 62/ 36/, The parallax for the middle of the eclipse *
Long. of the nonagesimal = 43° 52/ 36/". . = 67507.gh.
Dédlination of the nonagesimal = 16° 22' 28" Mean half duration for the beginning of the eclipse
Z'= —6°8263"; @-—N=4°50 897; = 190881 gh.
th responding parallax = —~ 88558 ghatikds The next approximation to the half duration for the beginning of
.. the cor ; = . ' ratio g
The parallax for the middle of the eclipse the eclipse = 2°97954 ghatikas.
:, = 675068 ghatikds. As this result is almost the same as of the previous step, the
*. the next approximation to the half duration for the beginning Hindu astronomers would finally take 2-98 ghatikds or 71 min.
of ti].B eclipse = 2:01946 ghatikas. to be the correct half duration for the beginning of this solar eclipse.
= 1051 asus. Now the instant of apparent middle of the eclipse

= 12 hrs. 43 min. Cal, M. T.

i i . 3 ikas before the instant of apparent
(i) Again ab 2'01046 ghatikas before the e Apparent half duration for the beginning of the eclipse

conjunction— N e 1
i = 0 sign .
?l;: :222;2332 (:,i :I;Z :::0,1 =0 siin 924° 57 50, .". the instant of the beginning of the eclipse
The longitude of the node = ( sign 29° 19/ 377, = 11 h:;.l32t1;urlt\.4 of o
The moon's celestial latitude = —20/ 32/, alcutta Mean Time.
Long. of the sun from true equinox = 48° 43’ 5", We now proceed tc determine the half duration for the end of
Time elapsed since sunrise = 53387'58 asus. this solar eclipse; this has been approximately found to be 2:15674

Long. of the orient ecliptic point = 182° 57 587, ghatikas="776"43 asus.
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(i) Now at 215674 ghatikds after the instunt of appurent _
(i) Again at 3'22389 ghatikds after the instant of apparent

conjunction—
The longitude of the sun = 0 sign 23° 81/ 517, conjunction—
The longitude of the moon = ( sign 26° 8/ 38" .The longitude of the sun = 0 sign 25° 32 54",
The longitude of the node = 0 sign 29° 19/ 21", The longitude of the moon = () sign 26° 23’ 317,
The moon’s celestial latitude = —14/ 58", The longitude of the node = 0 sign 29° 19/ 18",
Longitude of the sun from the true equinox The moon’s celestial latitude = —18' 1",
= 48° 47' 58/, Long. of the sun from true equinox = 48° 49’ 17,
Time elapsed since sunrise = 716501 dsus. Time elapsed since sunrise = 7549°18 asus.
Long, of the orient ecliptic point = 160° 17/ 58", Long. of the orient ecliptic point = 166° 10/ 317,
Long. of the nonagesimal = 70° 17 581, Long. of the nonagesimal = 76° 10/ 81/,
Deolination of the nonagesimal = 922° 30/ 55", Declination of the nonagesimal = 28° 15/ 54,
Z=—19' 8/, ; @-N= -21° 80/, - Z'= +27/ 63", ®-N= —27° 21/ 80",
The corresponding parallax in long. = +1°4326 ghatikas. The corresponding parallax in long. = +1'8582 ghatikas
. . . Parallax in long. for the middle of the eclipse
Parallax in long. for the middle of the eclipse oo P
= +'87517 ' o = 67517 gh.
Mean half duration for the end of the eclipse The thlrdtht:ppr;).mmatlon to the half ‘duration for the end of
= 215674 gh. eclipse = 8'31977 gh.
The first approximation to the half duration for the end of the = 1195°12 asus.
eclipse = 2'04417 gh. (iv) Again at 8°81977 ghatikds after the instant of apparent

= 1059°90 asus. conjunction—

The longitude of the sun

it

0 sign 25° 82’ 597",

(i) Again at 2'04417 ghatikas aftor the instant of apparent The longitude of the moon = 0 sign 26° 24/ 51"
conjunction— The longitude of the node = 0 sign 29° 19/ 17/,

The longitude of the sun = 0 sign 25° 32’ 38", The moon’s celestial latitude = —12/ 55",

The longitude of the moon = 0 sign 26° 19 37", Long. of the sun from true equinox = 48° 49/ 6/,

The longitu do of the node = 0 sign 29° 19/ 19 Time elapsed since sunrise = 758370 asus,

The moon'’s celestial latitude = —14' 8", Long. of the orient ecliptic point = 166° 42/ 11",

Long. of the sun from true equinox = 48° 48/ 45/, Long. of the nonagesimal = T76° 42/ 117,

Time elapsed since sunrise = 7448°48 asus. Declination of the nonagesimal = 23° 19" 4.

Long. of the orient ecliptic point = 164° 38/ 6. = +319"; ©®—-N= —27°58' 5.

Long. of the nonagesimal = 74° 887 G/, The corresponding parallax inlong. = +1'87)7 ghatikas.
Declination of the nonagesimal = 23° & 29/, The fourth approximation to the half duration for the end of the
Zi= +16' 21" ; @®—N= —25° 49/ 217, eclipse = 3'8523 ghatikas,

The corresponding parallax in long. = 1° 74282 ghatikas. = 1206°88 asus.
The second fbpproximation to the half durafion for the_ e:]d of the (v) Again at 88523 ghatikds after the instant of apparent
eclipse = 822889 ghalikds. conjunction—
= 1160°60 asus. The longitude of the sun . = 0sign 25° 88/ 17,

The longitude of the moon = 0 sign 26° 27/ 187,



= 0 sign 20° 197177,
= =192/ 437,

= 48° 49’ 8",

= 750541 asus.

= 166° 52' 66/,

The longitude of the node

The moon’s celestial latitude

Long. of the sun from true equinox

Time elapsed since sunrise

Long. of the orient ecliptic point

Long. of the nonagesimal = 76° 52/ 56/

Declination of the nonagesimal = 28° 20’ 4/,
Zi= +382 21" ; ® - N= 28° 8/ 48/

The correéponding parallax in long. = 1'8317 ghatilds.
Parallax in long. for tife migdle of the eclipse
. = 67517 gh.
Mean half duration for the end of the eclipse

= 215674 gh.
The fifth approximation to the half duration for the end of the

aclipse = 885327 gh.

As the next step will lead to the same result, we are to take that

the true half duration for the end of the eclipse =885827 ghatikas

=80 min. nearly.

Now the Calcutta Mean Time for the instant of apparcnt
conjunction = 12 hrs. 43 min ;
. the instant of the end of the eclipse
= T4 hrs. 8 min. C. M. T.

C. M. T. observed or i
O. M. T, calculated | calculated from the Difference

Phenomena Conn. des Temps.

Beginning of Eclipse | 11 hrs. 82 min. 11 hrs. 21 min. 11 min, later
Geocentric Instant | 12 hrs. 26 min. 12 hrs. 0 min. 26 min. later
of - ‘
oo “‘im ¢ i 29 min. lat
End of Etlipse 14 hrs, 8 min. 13 hrs. 84 min. min, later

This brings us practically to the end of the chapter on the solar
eclipses of the Khandakhadyaka ; bub Prthidaka brings in t.wo m'ore
problems, viz., (i) to find the phase of the eclipse at any desired t)m.e
and (if) to find the time for any definite phase. His method is
derived from the Brahmasphuta-siddhanta, and is illustrated below.

Problem 1. To find the part of the sun eclipsed at Calcutta ab
1 ghatika after the beginning of the eclipse considered above,

Now the eclipse began ‘at 2°93 ghatikds before the middle of the
eclipse. Hence we have, at this time 1°98 gh. before the midqle
of the eclipse—

The long. of the sun = 0 sign 25° 27 52",
The long. of the moon = 0 sign 25° 10/ 56",
The long. of the node = 0 sign 29° 19/ 24",
The moon’s celestial latitude = —19' 31",
Long. of the sun from true equinox = 48° 43/ 59/,
Time elapsed since sunrise = 567573 asus,
Long. of the orient ecliptic point = 137° 67 23",
Long. of the nonagesimal = 47° §7 23/,
Declination of the nonagesimal = 17° 34/ 52/,

Z1= —~5°19 89" ; ® —N= 46/ 36,
The corresponding parallax in long. = —'05398 ghatikas.

The corresponding parallax in latitude= —4/ 82",

Here, Moon — Sun= —~16' 56/, which is called the base of a right-
angled traingle, while the apparent celestial latitude of the moon is
called the perpendicular.

Now the difference of 16/ 56" is decreased by parallax, as the
moon and the sun are both east of the nonagesimal at the time.
The alteration of its value according to the Brahmasphuta Siddhanta
is expressed thus:—

Altered value = Difference x approximate half duration

Half duration
16/ 56" x 1-90881
298

=0 517,
-
Moon’s apparent celestial latitude

= —19'817—4' 32/
_241 3H'

Hence according to Brahmagupta™ rule, the apparent distance
between the centres of the sun and the moon

_ ~/ (101 5111)2 + (24’ 3”)2‘.
= 20/38".

Suni of the semidiameters
= 82 52/,

15
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the part of the sun obscured

. .

= 6197
Sun’s diameter = 31/ 51%;
*. the phase of the eclipse in digits
8 19/
g1 510 % 12

= 2 digits 23",

Th’e above method of Brahmagupta does not appear to be sat’s-
factory. A better method would have been like this:—

At the time under consideration, the parallax in longitude

expressed in time = 0598 ghatikas.
Now 4 ghatikas corresponds to % (difference of daily motions)
= 3116/,

‘0598 ghatikas to 42";
the apparent difference of longitudes
= 16/ 507 — 42
= 16/ 12", ‘
The apparent distance betwecn the centres of the sun and the moon
~ {612 @)
= 2940/,

the part of the sun obscured =38/ 12,

Problem 2. To find the time from the beginning of the eclipse
when the part of the sun obscured will be 6/ 19/ (Prthadaka’s result).

This b-y the converse of Prthiidaka’s process would lead to the
answer, 1 ghatika, after the beginning of the eclipse.

This finishes the fifth chapter of the Khapdakhddyakd relating
to Solar Eclipses.

CHAPTER VI

On the Rising and Setting of Planets.

Prthadaka begins this chapter by taking up some stanzas
from the eighth chapter, which are numbered below as 1,
2 and 3.

1. Multiply the ‘sine’ of the (Sighra) anomaly by the
‘sine’ of the maximum Sighra equation and divide by the
‘sine’ of the corresponding Sighra equation, the result is
the ‘Sighra hypotenuse’ when the (Sighra) anomaly is
half a circle, this Sighra hypotenuse is equal to the radius
diminished by the ‘sine’ of the maximum equation; when
the anomaly is equal to the whole circle, the same is equal
to the radius increased by the same ‘sine’ of the maximum

equation.

The Sighra hypotenuse spoken of here is EP (fig. on page 50),
when SP or KM is taken to be E; and it is EM (fig. on page 53),
when ES=IK. In the figure on page 50 when /PEM is a

maximum, PM is its ‘sine’; in the figure on page 63, when the

2 MES is a maximum, SM is its ‘sine.’

__ Rsin PMK x PM
In the former figure, EP= Ren PEM

. ) _ Rsin MSK x SM
and in the latter figure, EM = "B sin MES

This is equivalent to the ‘sine rule’ for a triangle in plane
trigonometry. Brahmagupta is here seen to be the first person to
rive it m Indian mathematics.



In either case the Sighra hypotenuse means the distance of the
planet from the earth according to some definite scale.

2. Four, two, eight, six and ten, multiplied by 10, are
respectively the degrees of the longitudes of the nodes of
Mars, Mercury, Jupiter, Venus and Saturn. Nine, twelve,
six, twelve and twelve multiplied by 10, are respectively
the minutes of their deviations from the ecliptic at the
mean distance from the earth.

The import of the stanza may be thus exhibited :—

Flanet Longitode o nade | 50Ul 00
Mars 40° 90’
Mercury 20° 120°
Jupiter 80° 60’

Venus 60° 120
Saturn 100° 120’

These figures are the same as in the Aryabhafiya, Dasagitika,
'8and 9. Amaraja’s text would make the geocentric orbital inclina-
tion of Mercury to be 150/, which appears to be due to & misreading.
According to Brahmagupta this is 152/, which converted to helio-
centric inclination becomes 6° 20/, a result very near to the
modern value.

38, From the apparent (heliocentric) longitude of a
planet subtract that of the node, and in the case of Mercury
and Venus subtract the longitude of the node from the
Sighrocea’ (i.e., the mean heliocentric longitude); the ‘sine’
of the remainder multiplied by the deviation and divided by
the Sighra hypotenuse of the last operation is the celestial
latitude in minutes.

1o this stanza the word samalipia means ‘either of the two planets
which have the same geocentric longitude. This is wrong. _In the

case of a superior planet it is necessary to use the heliocentric Inngi
tude, i.c., the geocentric longitude minus the -
annual parallax. In the figure given here,
‘et I, S, P, be the positions of the earth 2
sun and & superior planet, SN the line of
nodes; here the angle on which the celestial
latitude depends is the angle PSN. Let
Sr and Er be the direction of the first
point of Aries. Through E, draw EN
parallel to SN.

From stanza 2, we get the angle rEN',
which is equal to rSN,
Now, £PSN = f18P~ £rSN
L1EP— f EPS - £ vEN/
= Geocentric Long. —~ (Long. of node
+ Sighra Phala)*

i

The heliocentric celestial latitude of P

Orlntal inclination x SP sin PSN
§p — —— according to

the Siddhantas.

Hence the geocentric celestial latitude

Orbxtal lnchnatlon xSP sm PSN SP

8P P’

Orblbal inelination x SP sin PSN

)5’ T T T EP “‘_ T

Here/léP= B and EP is H the Sighrakarna as explained before.

Thus the geocentric celestial latitude

_ Orb. inclination x E sin {Geo. long. — (long. of node + Sighraphala)}
: H

Hence it is clear that from the apparent geocentric longitude of
a planet it is necessary to subtract the Sighra equation or the annual
parallax of the fourth step in finding the apparenb longitude in the
case of a superior planet.

* Surya Siddhanta, TI, 56 and 5.,
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In the case of an inferior planet the treatment is difforent. Let
I, V, 8 be the positions of the earth, Venus and the centre of the
v N vy epicycle (here the real orbit)

of Venus. Here also let
SN be the line of nodes;
Er, and Sr are the direc-
tions of the first point of
€ S Aries; EV! and EN' are

parallel to SV and S8N.

The celestial latitude

r ¢ depends on £ VSN.

Now VSN = L VSr—N8Sr
LV!Er— ¢ N'Er
Sighra of Venus — Node of Venus.

The heliocentric celestial latitude of V
. Heliocentric orbital inclination x RB-sin VSN
R
The geocentric celestial latitude is therefore
_ Heliocentric orbital inclination x R sin VSN xp
Rx EV
Where p=SV ; EV=H, the Sighra hypotenuse.
The stanza gives the rule as equivalent o this—
Geocentric celestial latitude
-_ Geocentric orbital inclination x B sin VSN .
EV
Now the Geocentric orbital inclination of Venus is given to
be=120';
Heliocentrio orbital inclination x P

4 '-. 120I= e e ——— Iﬂ ’
P _ 260
but =860

Hence the heliocentric orbital inclination of Venus

= 120'1; 18 _ g0 46/ 9", the modern value being about

8o 28/ 877,

Lo

The rule of the stanza in the case of an inferior planet is quite
correct. In the case of & ‘superior planet, however, thé geocentric
apparent longitude has to be converted into the heliocentric longitude
by applying the Sighra equation or annual parallax in the inverse
order. We now illustrate the rules by an example.

IUustration.—Let the time be Saka year 1851, 11 synodic months
and 19 tithis or A.D. 1930, the 18th March; to examine if Venus
was heliacally visible.

The ahargana=4062024 at midnight on Tuesday at Ujjayini

The mean Venus or the mean sun = 11 signs 2° 87’ 48",

The Sighra of Venus = 0 sign 11° 40’ 817

Linlla’s correction, at —158' per year to the Sighra of Venus from
421 of Saka year = -15°;

the longitude of the Sighra of Venus
( = 11 signs 26° 40/ 817,
The long. of Venus’ and sun’s apogee= 2 signs 20°

The sun’s equation = 134/ gin 72° 37/ 43"
= + 2° 7' 53,
The sun’s apparent longitude = 11 signs 4° 45! 86",
Sighra anomaly = 24° 21487
' G . '
Venus’ Sighra equation = 10° 3’ 25",
This halved = 5° 1/ 43"
Tlle new mean Venus for the 2nd step= 11 signs 7° 39/ 26/
Venus equation of apsis = 134/ sin 77° 89/ 26"
‘ = +2° 107 54",
This halved = +1° 5 27

The mean Venus for the equation of apsis of the 3rd step
= 11 signs 8° 44/ 537,
Venus’ equation of apsis of the 8rd step
: = 184/ sin 78° 44/ 531
= + 2° 11’ 26",

Mean Venus of the 1st step = 11 signsg 2° 87/ 431
Venus as corrected by the equation of apis, which is the same as
the centre of the epicycle of Venus, = 11 signs 4° 49/ 9

Venus Sighra equation 9° 127 40"

Geocentric Venus 11 signs 14° 1/ 497,
Bun’s apparent longitude = 11 signs 4° 45/ 86"
Difference = 9° 16/ 187 .

which represents Venus’ elongation on that day, and according to
the /Irqyabhaﬁya, Gola, 4, Venus ought to be heliacally visible



But Brahmagupta would take this 9° as kdlanéa or 86 min. of time
as the interval between the setting of the sun and of Venus as the
time criterion for the visibility of Venus by the naked eye.

Woe are thus to find the times of setting of sun and Venus on the
same day, say at Calcutta, and have to use the longitudes of these two
bodies at sun set on the same day, i.c., at 7 hours 18 min. of Ujjayini
time. These by the method described above are the following:—

11 signs 4° 28’ 55/,

The sun’s longitude

Venus’ " = 11 signs 13° 36/ 80",
The' final Jighre anomaly - = 21° 85/ 46/,
' Equation = 0° 4/ 1",
‘Sine' of max. Sighra equation = 108 p. 20'.
Radius = 150 p.

150 sin 21__°_35' 4% 108
150 sin 9° 4/ 1/

" The Sighra hypotenuse .=

S = 253-022.

" The Sighra of Venus' = 11 signs 26° 8/ 15",
Long of the node of Venus = 2 gigns 0° 0/ 0.
Difference = 0 signs 26° 8/ 15/;

,'. geocentric celestial latitude of Venus
= 120/ x sin 63° 51’ 45" x 150
253022
=~ 1° 8/ 89",
This illustrates the rule for finding the celestial lalitudes of
. planets, The next stanza describes the conversion of celestial
. longitudes into polar longitudes. :

In the &djoining figure let o be the position of a heavenly body of
S ) which 7N and oN are the celes-
tial longitude and the celestial
latitude of 0. TLet Q'rQ be the
celestial equator, A'rd the
ecliptic; let P and = be their
poles; woN a secondary to the
ecliptic, roKM and BENM the
secondaries to the equator, oRB
perpendicular to PNM. The
aim is to find KN which sub-
tracted from rN or added to it
gives rK the polar longitude’,
and oK is called the ‘polar

latitude.” 'I'né older astronomers attempted to find o«E* and they -
equated it to KN. Thus we have ;— :

4. Multiply the celestial latitude by the ‘sine’ of the
longitude increased by three signs (i.e., 90°) and divide by
871 ; subtract the resulting minutes from the longitude
according as the sun’s course in which the body is and the
celestial latitude, are of the same denomination and add
the result to the longitude if they are of different denomi-
nations.

In the triangle #PN,

Sin 7NP - 8in xP xgin P
gin 90° - °

Here ¢ P=M"Q, has been practically taken equal to NA.

Hence R sin sNP = 1. 8in 24° ;;R cos rN

~ B 5in 24° x B sin (90° +tN)
R b

s oR _ oN x R sin #NP
—

— oN x E 8in 24° x B sin (90° +rN)
BxR

— oN x B sin (90° +rN)
B2 '
E sin 24°

In the Khandakhddyaka, R=150 ; and Brahmagupta here takes,
R?

R sin 24°

thus he took R sin 24°=60 p 40/.

= 871;

oN xR sin (90°+7rN)

Hence ol =
37

» which is taken to be KN,

* R is the foot of the perp from o on the are PN,



This proves Brahmagupta’s rule. It is a distinct improvement
upon Aryabhata.* As to how R sin(90°+7N) occurs in this
equation, has been indicated by Bhaskara II, Goladhydya, VIII,
Comm. on 80-74, illustration 1, which has been detailed in full in
the translator's paper ‘‘ Greek and Hindu Methods in Spherical

Astronomy,’’ Problem V.

lllustration.—In the example taken, as found already
The geocentrioc longitude of Venus = 11 signs 18° 86/ 80",
The‘geocentric celes. lat. of Venus = —1° 8/ 89/,
The total shifting of the equinoxes from 421 of the Saka era
= 28° 17 8/;
» 7N in this case = 0 sign 6° 58’ 38",
and oN = —1° 8 897,
The correction to the celestial long of Venus for polar longitude

_ 68785 x 150 8in 96°53/ 88/

371
= + 25 88",
The polar longitude of Venus = 7° 19/ 10",
The polar latitude of Venus = —1° 8 89"

The point of the ecliptic which will set simultaneously with Venus,
at Caleutta, has now to be found when the point of the ecliptic
at 7° 19/ 16" will be on the western horizon, Venus having a south-
polar latitude will have already set. Hence a correction will have to
be applied-to the polar longitude to find this required point. We

now have the following rule for this purpose.

5. Multiply the north celestial latitude by the equi-
noctial shadow and divide by 12 ; apply the quotient taken

~ as minutes negatively and positively to the orient and
occident ecliptic points. When the celestial latitude is
south,. apply the resulting minutes to' the same points

*positively and negatively.

. @ola,, 86, where in place of R sin (90°+7N), B vers rfN is used. Btrangely
.- anough Arysbbaia's wrong rule is preferred to this rule of Brahmagupts, by Lalls,

" Ppihtidaks snd even by Zmarajs (1103 of Saka year or 1130 A.D.),

1f A be the polar latitpde and 12 tan ¢ the equinoctial shadow for
the station of latitude ¢, the correction is
_Ax12 tan ¢
12
Let NPZQ be the observer’s 2
meridian, NM the horizon, M '
the east point, QM the equator,
tKA a part of the ecliptic. Let
V be the position of a heavenly
body, of which rK is the polar
longitude, and VK the polar lati-
tude. When K is on the six o’clock
circle, the part of the diurnal
circle of K intercepted between this circle and the horizon is roughly

— MK x12 tanmr#
12 )

Similarly the part of the diurnal circle of V, between the six
o’clock circle and the horizon,

_ MV x12tan ¢

min.

T2 roushly.
3 KV x12 tan ¢ Lo '
Their difference = g which is here appr oximately

taken to be equal to the negative correction to rK. If K V were
south the correction would be positively applied to rK, '

On the western horizon, when KV is north the correction is -
applied positively and when south, it is applied negatively.

Illustration.—In the example selected KV is south, at Calcutta
the latitude ¢ =22° 85/, and KV = —1° 8 39,

The correction = —68/89" tan ¢
= —26/ 347,
Hence the point of the ecliptic which will set simultaneously with
Venus = rK —26' 347

= T° 191626/ 84/
= 6° 52/ 42,
The sun’s longitude = 11 signs 4° 28/ 55/,
The sun’s long. from true equinox = 857° 46/ 3",
Long. of the orient ecliptic point at sunset
= 177° 46’ 8",
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Long. of the orient ecliptic point when Venus sets
o _ = 186° 52/ 42",
Difference = 9° 6! B9/
of Libra and Virgo, each of which rises in 1966 asus at Caloutta.

Hence this difference of 9° 6/ 839" rises at Caloutta in 697 asus
=0° 67, which represents what is called kaldshda or degrees indicative
of time., The next stanza speaks of these kdlaridas, The two
operations described above are called the Drkkarmas,

6. Venus, Jupiter, Mercury, Saturn and Mars, cor-
rected by Drkkarma become visible (heliacally) when
separated from the sun by the Kalarsa of 9 increasing by
a common difference of 2, and they are invisible if separated
by less; the moon is visible if separated by 12 of Kalaasa
from the sun.

The rule may be exhibited as follows:

Degrees of Kaldréa from
Planet the sun necessary
for visibility
Venus 9°
Jupiter 11°
Mercury 18°
° | Saturn 15°
Mars 17¢
Moon 12°

This stanza is comparable with that of the Aryabhatiya, Gola, 4,
the only difference being the use of the term Kaldwéa in place of
difference of longitudes.

Iiustration.—In our example Venus was separated from the sun
by 9° 67’ of Kalarhéa, at sunset at Calcutta on the 18th Mareh, 1930.
Hence Venus became first visible by the naked eye at evening at
Calcutta on that date according to the Khandakhadyaka, the
difference between the settings of the sun and Venus being 89 mins.

48 gecs,

7. When the planet’s rising ecliptic point has a less
longitude than the orient ecliptic point, the - planet
has already risen, when greater the planet is yet
to rise. Wjhen the planet’s setting ecliptic point increased
by six signs is less than the orient point, it has already set
when greater the planet is yet to set. The intervening
ghatikas of time are obtained by making the less equal
to the greater by means of the local time intervals for the
risings of the signs of the zodiac.

This stanza requires no explanation and has been already
illustrated. We work out one more problem relating to heliacal
rising.

Problem. To examine if Jupiter was heliacally visible in the
easb on the 5th July, 1930, before sunrise.

The time is Saka year 1852; 83 Synodic months 9 tithis elapsed,
the sunrise being at 5 hrs. 21 mins. Calcutta time, which is 4 hrs.
80 mins. of Ujjayini time.

The mean Sun and Sighra of Jupiter = 2 signs 19° 15/ 807,

The mean Jupiter 2 signs 5° 544 59,

Lalla’s correction to mean Jupifer —4° 297 21,

The corrected mean Jupiter 2 signs 1° 25! 571,

The Sun’s equation + 134/ sin 44/ 807.,

i

i

= 1/ 447,

The Sun’s longitude = 2 signs 19° 17/ 14/,
Jupiter’'s longitude as corrected by

the equation of apsis = 2 signs 6° 31/ 16",
Jupiter’s geocentric longitude = 2 signs 8° 47/ 68/
Long. of Jupiter’s ascending node = 2 signs 20°,
Jupiter’s Sighra hypotenuse = 179 p.
Jupiter’s celestial latitude = —11/ 42/,
Total shifting of the equinoxes = 23° 17 23",
Sun’s apparent longitude = 102° 34/ 37",
Jupiter’s geocentric longitude = 920 5 210,

' 'y celestial latitude = —11/ 427,
The first Drklarma correction to
+11/42" % 150 sin 182° 5/ 217"

Jupiter’s 1 itud = L 20 T WY RID 04 9 4l
upiter’s longitude w71 ,

= -10".



The second Drkkarma correction to Jupiter’s longitudes

_ +11/ 420 x 12 tan 22° 35/

12
= +4/ 80",
Jupiter’s long. as corrected by the two Drkkarma operations
= 02° 9/ 417,
Sun’s longitude = 102° 84/ 87/,
Difference = 10° 24 56"

which is in the sign of Cancer which rises in 2087 asus.

' _ 2087 x10° 24/ 56"
80° '

= 707

= 11° 47,

Now the Kalamséa for the heliacal rising of Jupiter is 11° according
to the Khandakhidyaks. Thus Jupiter was heliacally visible on the
morning of the 5th July, 1930, at Calcutta.

* Bimilarly may be worked out other cases of heliacal risings of
the moon and of other ‘star’ planets.

The difference in Kdldméa's

This finishes Chapter VI of the Khandakhidyaka, which relates
to the rising and setting of heavenly bodies,

CHAPTER VII
On the Position of the Moon’s Cusps.

1. 703, 535" and 202" are the minutes of the tabular
differences of the declinations of the last points of Aries,
Taurus and Gemini. By means of the moon’s apparent
declination from which as many as possible of these parts
have been subtracted, the moon’s corresponding ascensional
difference is obtained as usual by adding up the correspond-
ing integral and fractional parts of the tabular differences
passed over. '

In Chapter III, stanza 1, are given the tabular ascensional
differences for one, two and three signs in binddis as—

}1.56_9 x 12 tan ¢, §8§XI2 tan ¢, 139><12 tan ¢, respectively for

the last points of Aries, Taurus and Gemini, corresponding to the
declinations—

708/, 1238' and 1440/,

In the case of the moon proportional parts cannot be taken by
using the longitude; hence Brahmagupta here lays down very
oorrectly the rule that the moon’s ascensional difference should be
found from the apparent declinations. The ascensional difference
found from this rule would not, however, be very accurate. Again
if the obliquity of the ecliptic be taken=24° and the inclination of
the moon's orbit at 4° 80/, the maximum declination of the moon

may come to about 28% 80!, for which the present rule is quite
inadequate.

To illustrate the methods of this chapter we _propose to éxamine
the position of the moon’s cusps on the 28th June, 1980, or 1852 of
the Saka year, 3 synodic months and 2 tithis, at 17 hrs. 56 mins,

of Ujjayini time, which is the time of sunset at Calcutta on
that day.



= 462125+ L1
Here the ahargana = 4062125+ 340

3 3 1

== 402125 + i Ti%eo
The mean sun = 2 signs 12° 54’ 83",
The mean moon = 8 signs 10° 49’ 597,
Moon's apogee with Lalla’s correction= 0 signs 28° 10' 46",
Bun’s apogee = 2 gigns 20°.

Moon’s ascending node with Lalla’s correction
= () sign 6° 24/ 10",

The sun’s equation = +16/ 82",

The moon’s equation = =192/ 8/,

The apparent sun = 2 signs 18° 11/ 57,
The apparent moon = 8 gigns 10° 87’ 617,
The moon's celestial latitude = +4° 20/ 14/,

Total shifting of the equinoxes = 28° 17/ 28",

The sun’s apparent longitude = 06° 28' 28/,

The moon's apparent longitude = 128° 55' 14/

The moon’s apparent declination == 28° 12/ 45",
Latitude of Calcutta = 22° 85/,

The moon’s ascensional difference as worked out by the formula
= 10° 16/ 28"

102 bin. 44% bip.

The same as worked by the parts = 102 bin, 55 bip.

The moon’s semidiurnal are 100° 85’ 147,

The sun’s semidiurnal arc* 100° 85/ 147,

The moon’s celestial latitude +4° 29/ 14/;

., the moon’s polar longitude 124° 55’ §9/1.

Il

I

The sun’s apparent longitude = 06° 28/ 28" ;

. the difference of the right ascensions of the sun and the moon
= 30° 12/,

The moon’s hour angle ‘ = 70° 23 14" W.,

neglecting the moon’s parallax and also the refraction which latter
was not detected by the makers of Indian Astronomy.

The moon’s declination = 28° 12/ 457;

.*. the moon's zenith distance = 64° 8" 17",

The sun’s declination 23° 50 14/;

', the sun’s azimuth from the West 25° 57 26/N.

I

!

*  Or the sun's hour-angle at sunset,

The moon’s Sumlutala == 27p 12/ 50",
The moon’s Agra : == G4p 49/ 2/,
The moon’s azimuth from the West = 15° 49/ 25//N.
The difference of the azimuth's of the sun and the moon
= 10° 8" 1.
The arc between sun and the moon = 27° 47/,
.". the angle between the line of the cusps and the horizontal
) = 22° 10/ 82/,
which is the angle by which the northern cusp is elevated.

We have thus shown above the modern way of solving the
problem and proceed presently to illustrate the method of the
Khandakhadyaka, which is also the method of the Indian Siddhantas.
It must be stated at the outset that the makers of the Indian
Siddhantas could not really solve the problem, and were satisfied with
only an approximation. Turther, the rule given above for finding
the moon’s ascensional differences is really unnecessary and
misleading. The calculation of the orient ecliptic points for the
rising und selting of the moon and thus to arrive ot the sidereal
measure of the length of the moon’s day is equally useless and
cannot help us in finding the moon’s hour-angle. Prthadaka’s
Sanskrit commentary uses this method for details of which the
reader is referred to his commentary.

2-3. Take the ‘sine’ of the difference or the sum of

- the declinations of the sun and the moon according as they

are of the same or opposite denominations, multiply it by
the hypotenuse of the gnomonic shadow triangle and divide
by the ‘sine’ of the co-latitude ; add this to the equinoctial
shadow if the result be of the same denomination with it,
or lessen it by the equinoctial shadow if they are of
opposite denominations ; the result is the perpendicular and
is south from the place where the moon is; the base is
twelve digits, and the square root of the sum of their
squares is the hypotenuse.

Let the positions of the sun and the moon be projected on the
meridian plane. In our illustrative example the sun is on the

17



horizon. Let O be the position of the observer; OP the line joining

8 the observer and the celestial

Q pole; 0Q, M'MA and BS are

traces of the celestial equator and

the diurnal circles of the moon

and the sun respectively. From

M, the projection of the position

0O A S N of the moon on the meridian

plane let MK be drawn perpendibular to the north-south line. The
stanzas aim of finding s triangle similar to MKS in the figure.

Here K8 = KA+AS,

KA+ 08-0A4,

Moon’s Samkutala + Sun’s Agrd
—Moon's Agrd.

I

Now Samkutala = R oos ¢

moon’s zenith distance, and ¢ the latitude of the station.

The sun’s Agrd =w, where & is the sun’s

R cos ¢
declination.
- R sin 8xR . ,
The moon's Agrd = _72—'3—08—‘#—, where 8 is the moon's
declination. ’
' i Rsin xR Rsin 8xR
Hence Kg="co8 Z xR sin ¢ Rsio _ .

Rcos ¢ R cos ¢ Ecos¢

Now in a triangle’similar to MKS, the side corresponding to MK
ia to made=12 digits and MK is B cos Z. Hence the side

K8 12x KS P
corresponding to K8 should be Mr = 12=~R—c-6;~z~, which is called

* here the perpendicular or Bhuja;

12x R » R sin 8 —R sin 8
RcosZ R cos ¢

Bhuja=12 tan ¢ +

v The expression Rlzofz' where Z is the moon’s zenith distance, is

called the hypotenuse of the moon’s gnomonic shadow triangle;
12 tan ¢ is the sun’s equinoctial noon shadow. In the rule in place

Rcos ZxR 8in ¢ “iyore 7 is the -

of K sin &~ I sin 8, Brahmagupta gives hore B sin (' —38); but in his
Brahmasphu{a-siddhanta, VII, 6, his rule agrees with the expression
obtained abave.

Now the Koti (i.e., corresponding to MK)=12;

.'. the hypotenuse =/ (Koti)* + (Bhuja)?,

=/ 12* + (Bhuja)?,
which is the expression for the hypgtenuse in the rule.
As to the direction of the Bhuja, it is south from S in the figure,
when the moon is south from the sun, and it is north from S in the
figure when the moon is north from the sun.

IMustration.—In the problem proposed,

. o ar, 12 (sin 28° 50' 14/ —gin 28° 12/ 45/
the Bhuja=12 tan 22 35’+—-r—~fc-(«)S 615 87 177 X cos 39° 557 2
=Tp 34! b4/,
Koli =12p ;
the hypotenuse=13p 88/ 19/,
The angle KMS=382° 17 nearly, this will be as we shall
see later on, the elevation of the northern cusp according to
the rule.

4. The difference in degrees between the longitudes of
the moon and of the sun divided by 15, gives the measure of
the illuminated portion along the hypotenuse as calculated
before. The obscured part is found as in the case of
the sun in the disc of the moon whjch is taken as of
12 digits.

The moon’s diameber=12 digits. When the angular distance
from the sun=180°, the whole disc is illuminated; for any angular
distance the maximum breadth of the illuminated portiomn is found
by the expression

12 x angular distance from the sun in degrees
180°

digits

— angular distance in degrees ;. .
' 16 digits.

A better approximation would have been

. 6% R vers (angular distance from the sun) 4,



which is given by Lalla in Sisyadhibrddhide, IX, 12; Brahmagupta
also accepts this rule in his Brdhmasphn[ta-siddhdnta, VII, 11, as
‘an alternative process.

The maxinum breadth of the illuminated portion of the disc being
determined from this rule, this is to be given in the dise of the moon
along the hypotenuse, the point thus arrived at being called Sitasita
point (i.6., a point showing the boundary separating the lighted and
dark portions of the moon) by Prthadaka. The method of finding
the dark portion of the moon appears to be the following :—Trom the
vertex of thé triangle where the hypotenuse and the Koti meet,
a line is drawn perpendicular to the hypotenuse. This cuts the
circumference of the disc into two points, The circle described
through these two points and the sitdsita point is the line of
demarcation of the lighted and dark. portions of the moon’s dise.*
Prthiidaka speaks of a different process, which is this——describe
another circle of the same radius that of the disc of the moon
through the sitdsita point, the centre of the circle lying on the
hypotenuse produced (i.c., in the direction in which the sitdsita point
is marked from the boundary of the disc).

INustration.—We have found before that the perpendicular

or Bhuja = Tp 84/ 57",
Koti = 12p. =
Hypotenuse = 13p 33/ 19/,

Lot NH be the north-south line ; take any point S in it: from S
measure SK in the directjon in which the moon is from the sun and
equal to Tp 84! 57! or the
Bhuja; with K and S as
centres draw two circles
with radii equal respectively
to Koti (here 12p) and the
hypotenuse (here 18p 33/
19"), intersecting each other

at M.
N With M as the centre
and radius=6p, describe s

H K S

circle representing the moon’s disc, cutting MS at 4.

# Cf. Brahmasphuta-siddhanta, VII, 14; Surya-siddhanta, X, 7-11; Sigyadhi-

brddhida, 1X, 14-18; Padlca-siddhantika, V, 7.

Now, Moon — Sun=27° 30/;
the maximum breadth of the illuminated portion
27° 30/
15°

Measure off Am along AM=1p 50'. Through M draw LMR
perpendicular to SM, c¢utting the circle representing the disc at
L and E. Now draw a circle through L, m and B ; now the shaded
portion represents the moon’s figure. As shown before the elevation

of L,=32° 17/, while we found this to be 22° 10 82" nearly.

=1p 50/,

The Siddhanta-makers apparently failed to recognise that the line
of cusps is at right angles to the line joining the observer and the
moon a8 also to the line joining the moon and the sun. The further
details given in Prthiidaka’s commentary are not interesting.

This brings us to the end of Chaptcr VII, which relates to finding
the position of the moon’s cusps.



CHAPTER VIII
On Conjunction of Planets.

1. Tour, two, eight, six and ten, multiplied by ten,
are the numbers of degrees in the longitudes of the nodes
planets beginning with Mars. Nine, twelve, six, twelve

and twelve, multiplied by ten, are the minutes of the .

~ deviations from the eclipfacof the same at the mean
~ distance from the earth.

- Tﬁis stanéa has been considered in Chapter VI, as stanza 2.

9. The ‘sine’ of the Sighra anomaly multiplied by the
‘sine’ 6f the maximum Sighra equation and divided by the
‘gine’ of the Sighra equation is the Sighra hypotenuse.
When the Sighra anomaly is half a circle, the hypotenuse
equals the radius diminished by the ‘sine’ of the maximum
equation ; when the Sighra anomaly equals the whole
circle the same increased by the same ‘sine’ is the
hypotenuse.

This also has been considered in Chapter VI, as stanza 1.

3. Divide the interval between two planets by the
difference of their daily motions when they are moving
in the same direction or by the sum of their daily motions
when they are moving in opposite directions ; the quotient
- taken as days represents the time, by which the conjunction

is to come when the slower is ahead of the quicker, and
~ by which it is over if the quicker is ahead.

The concluding portion is incomplete in as much as it does not
state how to find if the conjunction is to come or over when two
-planets are moving in opposite direction.

4. The interval between two planets multiplied by
one of the planets’ own .daily motion and divided as before
(as directed in the preceding stanza) is applied negatively
when the conjunction is over and positively when it is to
come ; this would make the planets of equal longitude.
For the planet having a retrograde motion, the negative
and positive applications are to be made in the reverse
order.

This stanza also requires no explanation.

5. TFrom the planets which have been thus made of
equal longitude, subtract the. respective ascending nodes ;
and in the cases of Mercury and Venus subtract the nodes
from their Sighrocoas: take the ‘sine’ of the resulting

arc ; multiply it by the minutes of thc mean deviation

from the ecliptic and divide by the $ighra hypotenuse of the
last operation ; the final result is the celestial latitude of
the planet.

This stanza has been already considered as stanza 8 of
Chapter VI .

6 (1st half). Of two planets which have the same
longitude, the difference of their celestial longitudes when
they are of the same name is the distance between them;
-when the celestial latitudes are of different names their sum
is the distance between them.

In this case also no explanation is necesiary. - The distance
between two planets used to be measured in hastas; one hasta was
taken equal to 1° or 60! of arc; hence 1 anguli=2/ 30",

6 (2nd half). When two planets’ centres. coincide,
the rest of the calculation is the same as in the case
of a solar eclipse. The celestial latitude of the lower
planet is to be corrected by the parallax in latitude as in
the case of the moon,



Here no detailed explanation is neccssary, excepting that the
necessary changes in the constants for the parallaxes and semi-
diameters of the planets will have to be made. To illustrate this
gecond half of the stanza by a concrete example is also not easily
available or possible. We may try to verify the conjunction of
Venus and Jupiter on the 17th May, 1930, at 18 hrs. G.M.T., Con,

des Temps. 1980, page 560.

IMustration.—Time, Sake 1852, 1 synodic month, 19 tithis
elapsed; *he day of the week being Saturday.

The ahargana up to the end of Saturday ab Ujjayini midnight
=4062084,

Tor the conjunction we have to subtract Sthof a day from the
ahargana, i.c., the ahargana is to be taken=462084 — §},. At this
ahargana—

The mean sun, the mean Venus or Jupiter’s Sighra

= 1 sign 1° 43/ 40"

The mean Jupiter = 2 gigns 1° 50/ 20/,

Talla's correction to Jupiter = —4° 209/ 2,

.*. the mean Jupiter = 1 sign “5° 21’ 18",
The Sighra of Venus = 8 gigns 17° 19’ 25"
Lalla’s correction thereto = —14° 80/ 46",

The Sighra of Venus = 8 signs 20° 48' 39/,
The long. of Venus’ apogee = 2 gigns 20°,

The long. of Jupiter’s apogee = § signs 10°.

The long. of Venus’ ascending node = 2 signs.

The long. of the Jupiter’s ase. node = 2 signs 20°.
Venus’ geocentric longitude = 1 sign 27° 87/ 19/,
Venus’ geocentric latitude = (° 48/ 22VN,
Jupiter’s geocentric longitude = 1 gign 25° 39/ 107,

Hence according to the Khandakhadyaka constants with Lalla’s
correction the conjunction should have happened two days before.
This is most probably due to the fact that Lalla’s correction as

applied here in the case of J upiter is an over-correction.

In the Brahmasphuta-siddhanta this topic is considered under
three aspects:—

() The conjunction by the equality of geocentric celestial
longitudes.

(i) The conjunction by the equality of polar longitudes or of
right ascensions. .

124

(i) The conjunction by the simultaneous position on the same
secondary to the prime vertical. 7

In the Khandakhddyaka as we have just now seen it is the first
aspect that is considered. The second half of the last stanza speaks
of what is known as Bhedayuti. This would include transits of
Venus and Mercury on the sun’s disc.

The Khandakhddyaka as origi

nd ginally composed by B

consisted of two parts :~— 7 Brehmagupta

() Inthe Khandakhadyaka proper the astronomical constants
used are all according to the teachings of Aryabhata I in his system
;)If ct;slsronomy referred tc by all writers and commentators as the

rdharatrika sysbem. This part consists of eight i i
oard ght chapters, this being

(i) The Uttara Khandakhadyaka, which contained Brahma-
gupta’s corrections to the first part and other improvements as ulso
supplementary chapters.

'Pg'thﬁda.ka’s text gives some of the stanzas of this Utfara portion
which will be considered in the next chapter. An attempt will also
be made to reconstruct some of the missing chapters from Bhattot-
pala’s text from which Alberuni makes profuse quotations "i‘he
Berlin manuscripb which we are using for this edition breaks up
abruptly. Bhattotpala’s text is also unreliable.

This brings us to the end of the Khandakhadyaka proper, the last

- chapter relating to the Conjunction of Planets.
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CHAPTER IX

Corrections and New Methods.
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1. Aryabhata made the apogee of the moon as moving
‘more quickly and the node as moving more slowly than
" their actual motions; if his constants give correct results in’
“relation to the end of tithis (i.e., conjunction, etc.) or

eclipses they must be considered as accidental as are the

letters cut into wood by weevils.

The following is a comparative statement of the sidereal periods
of the moon’s apogee and the ascending node : —

Sidereal Periods : —

]
According to According to | Modern
Aryabhatiye | Khandakhadyaka Values

. | 8231-987079 da. | 3331°987844 da. | 8232'3754 da.

Moon's apogee
(Lockyer)
Moon's node
6794'749611 da. | 6794°750834 da. | 6793°39108 da.
(Liockyer)

Hence Brahmagupto is not wrong in his contention ; we shall
presently consider how far he himseif is correct in finding the correct

siderea} periods.
+ wamferd i Nindne- g |
ety @ wa=afirgan e war aar i

* Taken from the Brahma-sphuta-siddhanta, I, 61.
, I, 62,

f ” i3] ” » 5 »

2. On seeing me, who possess the most accurate
knowledge of mean motions, men who have learnt from
the works of Srisena, Visnucandra and Aryabhata, cannot
face me in any meeting just like deer on seeing a lion,

No comment is necessary,

# gTTen Wen SR fgeRy |
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3. As the apparent planets beginning with Mars as
derived from the works of Srigena, Aryabhata and Visnu-
candra are far deviated from their true places, the worl;s. of
these authors are therefore not valued among the learned.

q AT FEHTT Tazgay a=d |
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4. As the process of finding the apparent places of
planets as given by Aryabhata does not make them agree
with observation I shall therefore speak of this process.
Of the sun the apogee is at two signs and seventeen

degrees.

Brahmagupta here says that the longitude of the sun’s apogee
=2 signs 17°, whereas it is stated to be 80° or=92 signs 20° in the
Khayndakhadyaka.

According to the astronomical constants as given in the Conn. des
Temps, the longitude of the sun's apogee in 499 A.D. (f,e., 1,400
years before 1900 A.D.) was,
= 77° 19/ 19:44" according to Conn. des Tomps® equation,

= 76° 40/ 87'22" according to Newcomb’s equation.

The mean of these two=77° very nearly. Hence Brahmagupta’s
determination of the sun’s apogee was more correct than that of
Aryabhata. The Aryabhafiya states the longitude to be 78° whlch
also is less correct than what Brahmagupta gives here,

* Brahma-sphuta-siddhants, II, 47.
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5. Multiply the ahargana by 110, increase the product
by 511 and divide by 8031; subtract the result taken as
revolutions, ete., from the mean moon; the final result is

the moon’s apogee.

Evidently Brahmagupta assumes that the anomalistic month

3101%1 days. This convergent to the anomalistic month was known

to the author of the old Vasigtha siddhania as summarised in the
Pasca-siddhantika.*

According to Brahmagupta the length of the anomalistic month,

158223645()0()()— 4320000000 } day
57753300000 — 488105858

= 9755454641 days, which is for 1900 A.D.
276545502 days according to Radau,
= 97554602 days according to the Aryabhatiya.

I

Here also Brahmagupta is more accurate. Again the length of
the sidereal period of the moon’s apogee

1577918450000
= —ssiosess M

= $282'782048 days.
Aryabhata’s value of the same
= §281'987844 days
The ‘modern value of it
= 82828754 days.
Hence Brahmagupta’s result is by ‘8566 of a day out, while
Aryabhata’s is by *8876 da. in.

%  Pafica-siddhantika, IT, 2-6.
} Brahma-sphute-siddhanta, 1, 16, 16, 18 and 2
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| 6-7. 35,32, 28, 21, 18, 5" are the tabular differences
of ?he sun’s equations in the wmanda operation as spoken
of in this ultara portion. 77°, 71', 61', 47°, 30’, 10’ are
the tabular differcnces of the moon’s manda equation

“(i.e., equation of apsis).

These tabular differences correspond to the tables of equations
alrcady given in Chapter I, stanzas 16 and 17; but the new method
of the next stanza here teaches how correctly to calculate the sun or
the moon’s equation for any given value of the anomaly by using
the second difference.

TR RlaIg AR e I TATERRTETT |
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‘ 8. Multiply the residual arc left after division by 900’
(i.e., by 15°), by half the difference of the tabular differ-
ence passed over and that to be passed over and divide b
900" (i.e., 15°): by the result increase or decrease, as thz
case may be half the sum of the same two tabular differ-
ences; the result which, whether less or greater than the

tabular difference to be passed, is the true tabular dlﬁerence
to be passed over.

'Ijhe rule given here applies to the case of all functions hithert
considered  in the Khandakhddyake, which are tabulated at tho
difference of 15° of arc of the argument  They are— °

(t) The tabular differences of the sun’s equation
(n) " . " »»  moon’s equation.
@iy o, ” " » ‘‘sines.’?
We illustrate the rule by an example belonging to the table of sines
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Hlustration,—To find the ‘sine’ of 57°.
Brahmagupta’s table of ‘sines’ in- Khandakhadyake is as
follows : —

Arc ‘Sine’ | Pabular Difference | Second Difference
0° 0

15° 89 39

30° 76 36 -3

45° 106 81 . ~5

60° 180 24 | ~7

75° 146 15 -9

90° 150 | 5 -~10

Now 57°=8420=900' x 8 +720’. Thus three of the tabular differ-

ences are considered as passed over; the last one being 31 and the

- one to be passed over is 24.
The true tabular difference by the rule, for the arc of 57°,

31+24 720 N 31-24
2 900 2

Hence the ‘sine’ of 57°

720 ( 31+24 720 x81—24)

39+36+31+900 9 900

= 125'76.
As worked out from the logarithin tables the samo
= 125:80,

Again ‘sine’ of §7° from Brahmagupta’s formula .

720 | o4 +a1 24 720 _ (720 4_'

= 100+50 *g00 ~ \ oo

720 720 [ 720 _ ) 21-381
106 + — 900 x 28+ 900 \ 900 1 )x o
which is the modern form of the interpolation equation up to the
term containing the second difference. Brahmagupta thus takes a
decidedly improved step here and is undoubtedly the first man in

— - —

*  Chapter I, 30; also Chapter I1I, 6.
} Cf. Ball's Spherical Astronomy, p. 18.
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the history of mathematics who has done this. The next stanza
directs the corrections that have to be made to the equations of
apsis of the sun and the moon as given in the Khandakhadyaka
proper.

feamin FamardgIganmgad | *
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9. The sun’s equations are to be made less by Jynd
part and the moon’s equations, increased by th part.
Multiply the sun’s equation by a planet’s daily motion in
minutes and divide by the namber of minutes of a whole
circle and this is called Bhujantara correction and appiied in
the same way to the planet as the equation is applied
to the sun.

The Khandalhadyaka proper applies this Bhujanlara due to the
equation of time to the moon alone.t The first thalf states the
corrections that are to be made to the equations of the sun and the
moon. The sun’s epicycle of apsis has the dimension 14° in the
Khandakhadyaka proper.} This correction would make its dimension
to be=14°(1— %) =18° 40'.

The correction to moon’s equations would make the epicycle’s
dimension=31°(1 +44)=381° 88/ 45/,

Prthiidaka’s commentary would make this=381°(1+ g5)=81° 85/,

aR@agraIzeTag Raagfacitag
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10. Deduct 354% from the ahargana, divide the
remainder by 6792; subtract the quotient that is obtained in
revolutions, etc., from the circle : the result is the longitude
of the ascending node.

% Prthidaka’s reading seems to be Q'ﬁ’"gum‘gaq i
t Chapter T, 18. Cf. Modern Sturya-siddhinta, I, 46
1 OChapter T, 16, 17.



Here Brahmagupta gives the upproximute period of the sidereal
revolution of the moon’s node to bo=06792 days. This according to
his Brakma-sphuta-siddhanta

1577916450000
232311168

= §792'25396 days, which according to Lockyer
= 670330108 days, while this ig
= 679475088 days according to the Khandakhadyaka.

‘Hence Brahmagupta’s attempt at correction makes the node
quicker than it actually is
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11. Of Mars the apogee (the aphelion point) is to be
increased by 17°, that of Jupiter by 10°; from the Sighra
of Venus 74" are to be subtracted; Saturn’s equation of
apsis should be decreased by its one-fifth; the Sighra
equation of Mercury should be increased by one-sixteenth.

This stanza says that in 490 A.D. Mar’s aphclion point had a
longitude of 127°, of Jupiter the longitude of the aphelion was 170°.*

According to Newcomb’s rule, the longitude of the aphclion
point of Mars in 499 A.D. works out to have been=128° 28/ 127,

According tothe Conn. des Temps’ rule the same was=128° 27/ 51/,

Hence Brahmagupta’s determination of Mars’s aphelion is correct
within 1° 80”, and is therefore quite satisfactory. According to the
Khandakhddyaka proper it was 110°, while according to the
Aryabhatiya it was 118°.

Again according to this gtanza Jupiter’s aphelion had a longitude
of 170° in 499 A.D.

According to Conn. decs Temps’ rule the same was=170° 25/,

Hence Brahmagupta is here also very accurate. According to
the Khandakhddyaka proper it was 160°, while according to the
Aryabhatiya it was 180°.

% Chapter IT, 6.
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The next two stanzas teach how to work out the correct Sighra
equation from the tabulated differences of equations for the stated
intervals of the Sighra anomaly as given in Chapter II.

yanfawatrE NeEntaraatagar qa9 |
YA, RANTIREIEA IR Eas 1R
faaaq Wwanfaged qafaios waeeg |
MNamaefaR agirand & wafa neu

12-13. Multiply the increase of the Sighre anomaly to
be passed over by the increase of the Sighra equation passed
over and divide by the increase of the anomaly passed over ;
the result is the number of degrees in the adjusted increase
of the equation passed over. Multiply half the difference
of this result and the increase of the Sighra equation to be
passed over by residue (of the anomaly left after subtracting
as many as possible of the preceding intervals of Sighra
anomaly) and divide by the increase of the Sighra anomaly
to be passed over : by the new result decrease or increase as
the case may be, half the sum of the same two increases of
the equations; the final result which is either greater or less
than the increase of the Sighra equation to be passed over,
is the true increase of the equation to be passed over.”

The meaning is made clear by an illustration.
INMustration :—To find the Sighra equation of Mars for the Sighra

anomaly of 80°.
Mars’s tabulated differences of the Sighra equation are as follows : —

—r

Increase of the Increase of the
Sighra anomaly Sighra egnation

2g° 11°
3¢ 12°
30° | 10°
31° i 7°

&e. l . &e.
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Here the intervals of anomaly are not equal.

. The residue of the Sighra anomaly
<. = B80°—(28°+82°) = 20°,

'The rules stated above say that for the last 30° of the Sighra
-anomaly the change in- the Sighra equatlon,

126 x 80°
= 22 X0 =110 15,

*

. s
- Now as in stanza 8, the Sighra equabion for 80° of the Sighra
_'ano_maly of Mars :

Sy

20 (11° 15'+10° 20 [ 11° 15'—10°
Q [}
1104120+ 55 b) 30( 3 )}

= 20° 48/ 20",

. 1t the Sighra’ equatlon were worked oub by the s:mple rule of
proporblonal parts it would have been

0 po41904.20
R 2 E

-

x 10°=29° 40/,

Now Marss Sighra epicycle having a clreumference of 234°,
Whlle ‘the de{ferent. has a circumference 860°, the Sighra equation
sorrectly worked out for the anomaly of 80°, ‘ o

waned ;;1- ".Mu-‘ EITR N Y

= 29°54 27~

Thus here also Brahmaaupba. takes a distinctly improved step in
!mterpolabxon :

mwmﬁmaﬁmamg aﬂmwﬁ-mrﬁa |
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14 In finding the arc corresponding to a given ‘sine’,
, ﬁnd the résidue left aiter subtractmg as many as possible
of the’ tabular dlfferences of ‘sines’, multlply it by 900 and
divide by the tabular difference to be passed over: by

means of the mlnutes of arc obtained find the true tabular

difference by repeatmg the process and thus find the
minutes of arc corresponding to the required residue of
the ‘sine’. , - -

This stanzs teaches how to find the arc correctly by using the
tabular differences as described in stanza 8 of this chapter. The
method of adjusted interval of the preceding stanza would have
however served the purpose equally well. ’ : L e

This finishes the chapter IX of the Khandakhadyaka being the
introductory chapter of the Uttara Khandakhadyaka, which treats of
Brahmagupta’s own corrections to the astronomical constants and
improved methods of Interpolation.



CHAPTER X
On Conjunction of Stars and Plunets.

This section treats of the conjunction of planets and the yoguldras
or “Junction stars’’ The first two stanzas describe the number of
stars in each lunar mansion or naksatra.
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1-2. The number of stars is two in each of the

following nakgatras :—Maila, P. Bhadrapada, U. Bhadra-
pada, Aséwini, Punarvasu, Vigakha, P. Phalguni, U.
Phalguni ; Of the naksatras Citra, Pusyd, Satabhisa,
Ardra, Swati, Revati, the number of stars is one in each
case ; the naksatras,- Abhijit, Jyestha, Bharani, Sravana,
Mrgadira, have each three stars ; Krttika, Aglesi, Magha,
have six each ; Anuradha, P. Asadha, U. Asadbi, four
each ; Dhanisthid and Rohini, five each.

WANURS @@ e sfadinanm
yafaRay avat wfadt a1 auraa@r iz
8. Of the stars in each nalksatra, those that are seen

to be the brightest are the ‘‘junction stars’” ; of them are
given the polar longitude and the polar latitude.

TEagHa nfy wheftnaeifia |

smezd quigmefafin 6l Aafra®: ug
a=nat ygaeglat nfaufafefef dgae:)
fragdmfaefafiriaf wmeagaeas: 1w
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awisTaQ; A a@w@ﬁ%’}‘ﬁa gfafdd: |
goafiantat yamidataro g
4-6. By means of the following polz;i‘“-;LQ_l\lgitlldes of the
““junction stars ” of each naksatra beginning “with Asvini,
the conjunction of plancts with them should be judlged :—
In Mega by 8° and 20°;in Vrsa by 7° 28’ and 19° 2§’ ;
in Mithuna by 8° and 7° ; in Karkata by 5°, 16° and 18° ;™
in Simmhha by 9° and 27°; in Kanya by 5° and 20° ; in
Tula by 8° and 19° ; in Vrscika by 2° 5’, 14° 5" and 19° §';
in Dhanu by 1°, 14°, 20° and 25° ; in Makara by 8° and
20° ; in Kumbha by 20° and 26° ; in Jhaga by 7° and 30°.
These stanzas are the same as 1-3 of Chapter X of our author's
Brahwmasphutasiddhanta.

e uEEfus: aeEhhasaar au |
g ARHCHAE YARAAA AT, 1ol
7. When the planet (corrected by the Ayana drkkarma)
is less than the polar longitude of a ‘junction star,’’ the
conjunction is yet to take place ; if greater, the conjunction
has already hapbened ; the reverse is the rule when the
planet has a retrograde motion : the rest of the calculation
is similar to that for the conjunction of planets. The
polar latitudes are given from the end on the ecliptic of the
declination corresponding to the polar longitudes.
AT TR AT T TRITETET, QT |
4 g =faan € @iwn g@eneaan i
gfaual waanan anfdugzaasr awm
s wqeRdwaREd rafawaa ve
G gifuar afsferquzfanfzactanr |
FeTewU faugfdgmmaean e
8-10. They are 10°N, 12°N, 5°N, 5°8, 10°8, 11°8,
(GON, 0°, 7°8, 0°, 12°N, 13°N, 1198, 298, 870N, 1°}§,
308, 4°8, 8948, 5918, 5°S, G2°N, 30°N, 36°N, 18’8,
94°N, 26°N, 0°,
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The stanzas here numbered 087 g ¢ and 10 are the stanzas 4,
5, 6 and 7 of the Brdhmasphl',‘.,usi(lclhﬁntu, X,

mSEATafaFuil: aafaaaia: )
AR g HETARRIATATAT SH 1L
. ogrrwaratSfaTrar, anfufdmanarn |
 wzanen fmr@ww fowar 99 R

11-12. Of the junction star of Rohini, the polar lati-
tude has to be diminished by 27', of that of Krttika by 29,
of that of Citra by 15, of that of Vidakha by 7', of that of
Angrﬁdha by 76’, of that of Jyestha by 30"

The above are the stanzas 8 and O of Chapter X of the DBrahma-

‘sphutasiddhanta. .
Before we proceed any further it is. necessary to put these

statements in a tabular form.,

d. o8l ow oL ] Polar | t
A 3.§: A 3':5 : o 8% longitude Polar 9 E 2
; 2w 2wl 98wt of : S8
_ Naksatras E..‘?lg E'E"tg ,gg,"é‘; _ ot junction latltlflde 2 n-tgw
or Lupar |2%53 %5 3l B&T ¢ Tdentification " o 8
f gl n 3 =end star : & _tgum
mansions {5 8733 §_§a 8% 8= junction 5 5
s38c83 %83 s o g oer | 853
z ; 28 =] 3 g g g gy
— —_ . 9 § . .
Aéwini 2 8 | Head of o [, Band 7 |0s. 8°0' | 10° N | B Arietis
horse. Arietis
: 1 ) 3 Yons Musca 0s, 90° 0’| 12° N | 85, 41
Bharast 8 Arietis
Kiyttika 6 6 | A razor Pleiades 15, 7° 28| 4° 81’ N| Alcyone
Rohipi 8 5 | A cart or an| Hyudes 1. 19° 28" 4° 33* 8} Aldebaran
.| ekka of the
U. P.
Mygaéira 3 | 8 |Hesd of a A, ¢, and |2 80 |10°8 | A Orionis
deer. ¢, Orionis
Ardrd 1 1 | A jewel. « Orionis 2. 7°0 1 11°8 a Orionis
Punarvasu 2 2 | A house Custor und | 8s. 8°8' | 6° N Pollux
. - Pollux (a and
8 Gemini)
Pusya 1 3 | An arrow- | Presepe (3, | 8s.16° 0| €° 5 Caneri
head| =, v Caneri)
~
‘Adlegd 6 5 | A wheel 6,3 0, 8. 18°0 7°8 ¢ Hydra
. ] Hydra

GHAL T X

Nakgaltras
or Lunar
mansions

No. of stars in,

Magha
P. Philguni
U, Philguni

Hasld
Citra

Swati
Visakha
Aonuradha

Jyestha

Mila

P. Ksadha

U. Zgadha

“Abhijit

Sravapd

Dhanigtha

Satabhisa

-

P. Bhadre-
pada

U, Bhéadra-
pada

Revatl

according to
. Khandakhadyaka

|

=]

(39

|59

No. of stars in,

g to

accordin
-Sarhita

Sakalya.

i
o o |
t

1w

9

a

naksatras -
according to
kalya-Samhit

Descriptions of
a

S

!
i
|
|
J

A wall
A carpoy
Do.

A hand
A pearl

A pieco of
coral

A gate -
Au offering

An ear
pendant

The tail of
a lion

The tusk of
an elephant

A carpoy .
An ear of
an elephant

A mrdanga
(tabor)

De.
A circle
A carpoy
Do

A mrdanga

to the gods

I Polar
longitude
. Ofc
Ldentification| JUBCE0D
star
o0 h [
g & 8
B - 3
a1, & o 48, 9°0
e Leonis
Sand 0 4s. 27° 0’
Leonis
B Leonis & | 5s. 6° 0
B Virgo
Corvus 58, 20° O’
Spica 6s. 8° 0’
Arcturus or | Gs. 19° 0’
a Bootis !
aand B : 7s. 2° 5
Libra
w,5and w | 73. 14° 5’
Scorpionis "
Antares with| Ts. 19° 5'
the two stars!
on its sides.
(e, c and
Bcorpionis)
&m0, |8s.1°0
1, KA, v
Scorpionis
5, 7, A, ¢ 8s. 14° 0/
Sagitturius
o 6,7 8s. 20° 0
Sagittarius
a, Band y | 8s. 25°0’
Lyra
a, Bandy | 9s. 8° 0/
Aquile
a, B, 7,8 & | 9s. 20° 0’
€ Delphinis
A Aquaris &i10s. 20° 0/
other stars
«and 8 10s, 26° ¢/
Pegasi
7 Pegasi and/11s. 7°(/
a Andromeda :
¢ Piscium 0s. 0°0

tot
G
Polar 248
latitude | 5% &
of 8 g ]
jonetion | & st A
star 888
ke
0° Regulus
12° N | 8 Leouis
18° N | B Leonis
11° 8 |y &5 Corvi
1° 45" 8| Spith
87° N | Arcturus
123’ 8| ¢ Libra
1°44’ 8l 5 Scor-
pionis
3°30° ${ Antares
8° 30’ B! A Scor-
pionis
5°20" 8|3 Bagi-
ttaring
5° 8 7 Bagi-
ttarius
62°N | a Lyra
80°N | a Aquile
36° N | « Delphi-
nis
18" 8 | A Aquaris
24° N | a Pegasi
206° N | y Pegasi
0° ¢ Piscium
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About the configurations of nakgatras, the ‘‘junction stars’’ and
other details, the reader will find a good summary of the researches
of Colebrocke, Bentley and Burgess in Brennand’s Hindu Astro-
" nomy, pp. 36-48.% '

s E?tﬁn; SR wifgad senfE@aaEn ue )
uatfa gfaufefn fafemmmnta S=wa: it

18.* Three stars of Rohini, two Aglesa, six of Hasta
of which the presiding deity is Sun are thrown (i.e. lie)
~on the south of the ecliptic, the remaining stars of these
" naksatras are on the north of the ecliptic.

wiRafa Auart s igufEaRag
- wefaRar aenfudi wafa aafemen: nesn

14. A planet being on the sameside of the ecliptic
occults a ‘junction star’, if its polar latitude be either
greater or less than that of the ‘junction star’ decreased
,or increased by the semidiameter of the planet.

Let the polar latitude of the ‘‘junction star’’ be A, and that of the
planet be A, ; at the instant of occultation either

A, =\, < semi-diameter of the planet,
- or A.z"_l\.; < - Vs o1 N
either A,>A; — semi-diameter.
or A,<<A; + semi-diameter.

faRutnfeatarefua) awmrer anemd )
e =@ g fusfa wwe @Qfean i
. 15. When a planet’s polar longitude is at 17° of the

sign of Vrsa and its polar latitude is'greater than 2°8, it

occults the cart of Rohini - .
fagarm |9 adtaana et faaw
- ggfitafa gt A aruatatas: ngg

* Cf. Alberuni’s India, Vol. I, pp. 84-85.

CHAPTER X : 158

16. When the moon has the maximum north polar
latitude she occults the third star ofh‘agha ; when she has
no celestial latitude she occults Pusya, Reva‘ti\a‘ggi Satabhiga.

N

Bhattotpala’s - text being hopelessly corrupt in the ‘?emgining
chapters, we give up our attempt at reconstructing and translating
them. o

This finishes Chapter X of the Khapdakhadyaka which relates to
the Conjunction of 8tars and Planets, being the sccond chapter of the
Uttara- Khandakhadyaka,

20
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APPENDIX I

Hindu Luni-solar Astronomy.

1. Tn the present paper it is proposed to discuss the astronomical
constants and the equations in Hindu luni-solar astronomy and to
present a comparative view of these quantities with the corresponding
ones in Greek and modern astronomy. It will be shown that in
many ceses the Hindu values of these constents are more accurate
than the Greek values, and in Hindu lunar astronomy the equations
or inequalities discovered are the most startling.

2. 8Bolar Astronomy,

In solar astronomy the length of the year was determined by
Aryabhata * from the heliacal risings of some bright star at the
intervals of 365 and 866 days.

(1) The yesr according to the Aryabhatiya

1577917500 ,
— 157791750 =-365-2586605 days,
1820000 O7° ye

= 865 da. 6 hrs. 12 mins. 2964 sccs.

__ 1577917800 - .
(2) The same = 4820000 days=3865'25875 days,

= 865 da. 6 hra. 12 mins. 86 secs., according to the
Khandakhddyaka, the Sirya Siddhanta of Vardha and
the modern Sarya Siddhdnta.

1577916450 .
jg= =0 (22070 days=23865'2584875 days,
@) Itis=~a00000 %7 2y
= 865 da. 6 hrs. 12 mins, 9 secs., according to the
Brahma Sphuta Siddhanta of Brahmagupta.

* D, O. Bengupta, “ Aryabhata’s Method of determining the Mean Motions of
Planets,’* Bulletin of the Caleutta Muathematical Society, Vol, XII, No. 3,
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Now the mean sidereal year Se
= 865 da. 6 hrs. 9 mina. 9'8 scci (Lockyer).

The mean anomalistic year ™~
= 865 da. 8 hrs. 18 mins. 498 secs, (Lockyeri.

The mean tropical year .
= 865 da. 5 hrs. 48 mins. 46°054 secs. (Lockyer).

Though we take that the Hindu year was designed to be the
sidereal year, it approached most closely the anomalistic year; and
its excess over the sidereal year was about 3 minutes. From this
consideration it appears that the Indian astronomers were justified in
taking the sun’s apogee to be fixed.

Against the error of +8 min. in the Hindu sidereal year, we may
point out that—
(1) The Hipparchus-Ptolemy tropical year,

365 da. 14’ 48" in sexagesimal units,*
= 865 da. 5 hrs. 55 min. 12 sccs., which has an error
of about + 6 min.

1l

(2) Meton’s sidereal year=(865+] +,%;) days t
= 865 dua. 6 hrs. 18 min 57T secs. which has an error of
+9 min. 48 secs nearly.
(8) The Babylonian sidereal year was 4} min too long.} Thus
the Hindu value of it is closer to the true value.

Again in 150 A.D. the longitude of the sun’s apogee according to
the Conn, des Temps was

I

101° 18/ 15717 - 618903 x( 1.9.0‘1)0:)1150

+ 1188 x ( lﬁu') 2’
100

= T1° 16/ 2687,
while Ptolemy states it to be 65°80/§ which was wrong by —5°36/27/.

*  Syntazis, Karl Manitius's edition, Vol. I, p. 146.

t Ibid, p. 145,

1 Encyclopedia Britannica, History of Astronomy.

§ Syntaxis, Vol. I, p. 148, The Romaka Siddhénta of the Pafca siddhaniika,
VIII, 2, indicates the sun's apogee to be at longitude of 75°; this was perbaps a
correction made by Liatadeva to the Greek constapt.




Tn 500 A.D. (Aryabhata’s sime), the longitude of the sun’s apogee
by the same rule works sut to be =77° 19r 19-44",

Aryabhata stsices this to be 78° in the Aryabhatiya, Brahma-
gupta in tho Uttaradhydya of the Khandakhidyaka states the same
to be 77°, while the Khandakhadyaka gives it as=80°. Hence the
Hindu findings of the longitude of the sun’s apogee were more
accurate.

Again as to the sun’s equations of the centre we find that the
Aryabhatiya states the periphery of the sun’s epicycle to be
18°80/. The Khandakhdadyaka gives it as 14°; while according to the
Hindu form Ptolemy’s value of the same is 15°. Hence according to
these writers, the sun's equations at 90° of the mean anomaly
are:—

According to the dryabhatiya-—2° 8 54",
" »»  Khandakhidyaka=2° 14/ O,
" »»  Brahmagupta=2° 7/ 20".
» »  Ptolemy=2° 28/ 3",

The modern value =1° 55! 917,

Thus the Hindu equations of the sun are generally more correct
than the Greek ones. The Hindu constants in solar astronomy are
thus, generally, more accurate than the Greek ones. We now turn
to the Hindu Lunar astronomy.

8. Lunar Astronomy.

Before discussing the constants in Hindu lunar astronomy it is
necessary to state something as to the time when the moon was
observed by our ancient astronomers and the astronomers from
Aryabhata I (499 A.D.) to Prthadaka Swimi (864 A.D.)). The
months were reckoned from the first visibility of the crescent ai the
time of the Mahdbharata (1400 B.C.). We have a passage in the
Bhismaparvan where Vyisa speaks of the evil omens on the eve of
the Kuruksetra war thus—

“ymgzigdt TEEEEE gdieda

“*That the moon and the sun have been both eclipsed on the
18th days of the light and dark halves of the same month. ”

The eclipses could not take place on the 18th days of the
month unless the months were reckoned from the first vigibility of
the crescent. This was the custom in Babylonia and it has still
gurvived in the Mahomedan world. Even in the Panca-siddhantika

of Varahamihira (540 A.D.) there is o special chapter on wwgd«i§ or
the first visibility of the créscent. It is thus clear that the practice
was to observe the moon when very near the sun. ‘

Again Aryabhata says that “tdigd@ime waifead=:,” ‘‘the moon was
determined from her conjunctions with the sun.”’ The moon was
observed by him at the time of solar eclipses, or at the time of the
first visibility of the crescent.

Tven up to the time of Prthadaka the accuracy in lunar

‘astronomy was chiefly aimed at at the time of eclipses. Thus in his

commentary on the Khandakhadyaka, IV, he makes the following ’
introductory remarks :—

‘Al knowledge relating to {luni-solar) astronomy is desired by
the wise (or cultured) specially for knowing the right instants of
opposition or conjunction; these instants are however not visible to
the eye. Of other things such as tithis, naksatras and karanas, as
the planets, the sun and the moon, are not clearly observed, their
beginnings and ends are not visible. Men see the agreement
between calculation and observation abt the times of solar and lvnar
eclipses. Hence the word of the astronomer iz esteemed amongst
men even in respect to such things as tithis, ete.”’*

Thus the chief aim of the ancient Indian astronomers was to
calculate the eclipses accurately and the moon was observed chiefly
at lunar or solar eclipses, though the time for observation related
also to the finding of the first visibility of the crescent. This latter
phenomena did not perbaps lead them to directly observing the
moon’s posi tion at such times by using instruments.

8a. Moon’s Mean Motion.

The practice of observing the moon at the time of the eclipses
alone led to the determination of the synodic month with the
following results :—

(i) Mean synodic month according to the Aryabhatiya
. 1577917500
"~ 57753336 — 4320000
29530582 days.

days,

i

* O qredin gHAMG gae wEAfEd ME: | A9F T gsat gXd Wi | sRgmiG
faferqeacamt awmrq  Aat sfwrerciafrden - aftnsEe e it w
e gmfi ) aenfefzamey 2avam % wifzad o
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(i) The same sccording to the Khanda
= 29'£805874 days,

KHANDAKHADYAXA

khadyaka

(iti) The same according to the Brahma-sphuta-siddhanta
= 29580582 days. '
(fv) The same according to Ptolemy
= 29 da. 81f 507 8" 20" in sexagesimal imits,
= 205805927 days.
The modern value according to Newcomb and Radau 7 ;
= 29°5305881 days.

. .
Hence the Khandakhddyake mean length appears to be the closest

approximation.

Y

»

The mean sidereal month must have been dgduced from the mean
gynodi¢ month and the year adopted. Hence no comparison need be
made of this element here.

We next consider the sidereal periods, the nodes and the apogee
of the moon. These are shown below : —

According to

8id. Per. of Maon’s Apogee

8id. Per. of the Aacendingl
Node

Aryabhatiya
Khangdakhddyaka
Brihma-sphi ta-siddhianta
Ptolemy )

Modern values (Lockyer)

8231987079 da.
3231987844 da.
8232'73411 ds.
3232°617656 da.
828237543 da.

6794 749511 da.
6794°750834 da.
6792°25396 da.
670645671 da.

6783°89108 da.

Here also the Hindu values show a closer approximation to the
true values, Brahmagupta’s figures representing the nearest

approach.

8b. Other Constants,

8o far the Hindu values of the constants have been more accurate
than the Greek ones; but as to the inclination of the moon’s orbib
the Greek value is more accurate than the Hindu value. '

Inclination of the lunar orbit

Hindu value
Greek value

Modern mean value

= 4° 30/,
= §° 0/,

=. 5° 8' 48/°427 (Brown)
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This discrepancy confirms the conelusion, that the observation of
the moon was restricted to the time when she was near & node, either

at solar or lunar eclipses,

magnified itself into about half a degree,

where a small error of observation

We now turn to the parallaxecs of the sun and the moon:—

Aryabhatiya

Khandakhadyake and Brahma-

gupta
Ptolemy

Modern values

Sun’s Mean Hor,
Parallax

8’ 55”62
8 56'5

% 51"
0’ 8”806

Moon’s mean Hor.
Parallax

52" 80”
59’ 42"'°3

53’ 84"
57 2”79

As to the sun’s horizontal parallax, the ancients wers of course
totally wrong, but in respect to that of the moon their values were

fairly approximate.

.

We next consider the angular semi-diamcters of the sun and the

moon. These are :—

Moon’s Mean
Bemi-diameter

Sun’s Mean
Semi-diameter

erabhagiya

Khandakhadyaka

(Brahmasphuta-siddhanta)

Ptolemy

Modern values

15 45"
16’ 0”22

17 40"
15’ 83”60

16' 29”4
16" 15"

15'40”
161”8

Here also the Hindu values are more accurate than the Greek

values,

8¢, Moon’s Equations—The First Equation,

It remains now to consider the moon’s equations in Hindu
astronomy. As has been pointed out before, observation was up to
the time of Brahmagupta, restricted to the time of eclipses perhaps

also of syzygies.
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The modern form of the moon’s equations is

=877 sin (nt—a)+18' sin 2(nt—a) +...

+ 76 gin {2(nt — @) — (nt —a)} + 40 gin Znt— @) +...*
where nt=mean longitude of the moon, a the longitude of the
perigee, ® =longitude of the sun.

Here the first two terms, viz,, 877 sin (nt —a} + 18’ sin 2(nf—a},
are due to elliptic motion about the earth in one focus; the term
76/ sin {2(nt — @) — (nt—a)} is known as the evection. We combine
a part of the first term with the evection term and the expression for
the equation of centre becomes

=801’ sin (nt—a) + 18/ sin 2(nt—a)+...-+ 152 sin (n{— ®) cos (® —a)
+ 40 gin 2 (nt — @®).

Now at syzygies and eclipses sin (nt —@®) and sin 2 (ni—@®) will
very nearly vanish. Hence according to modern astronomy at the
syzygies and eclipses, the chief term of the moon’s equation=
801/ gin (nt —a).

This according to the Aryabhatiya

=300/ 15" gin (nt—a),

Khandakhadyaka

=296/ sin (nt —a)
Uttara Khandakhdadyaka

=301"7 sin (nf—a),
Brahmasphutasiddhanta

=203’ 81" gin (nt—a),

Greek astronomy .
=300/ 16" sin (nt—a) very nearly.

e LR

Hence both the Greek and the Hindu astronomers were very near
the true value of the moon's equation at the syzygies and eclipses.
Godfray in his Lunar Theory, page 107, observes, ‘‘the hypothesis
of an excentric, whose apse has a progressive motion as conceived by
Hipparchus served to calculate with considerable accuracy the
circumstances of eclipses; and observations of eclipses, requiring no
instruments, were then the only ones which could be made with
sufficient exactness to test the truth or fallacy of the supposition.”’
We next consider the second inequality of the moon.

* The accurate values of the co-efficients appear to be 877" 19" 06, 12’ 57" 11,
76° 26" and 89" 80,
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8d. Moon’s Sccond Inequalily or Equation,

In ancient times it was Ptolemy who first really found & second
inequality of the moon. According to Godiray (Lunar Theory,
p. 107) ““ by dint of careful comparison of observations he (Ptolemy)
found that the value of this second inequality in quadrature was
always proportional to that of the first in the same place, and was
additive or subtractive according as the first was so; and thus, when
the first inequality was ab its maximum or 5°1/, the second increased
it to 7° 40/ which was the case when the apse line happened to be in
syzygy at the same time.”’ '

It is well known that though Plolemy discovered the second
inequality in the moon’s motion he was not able to ascertain its true
nature. His corrections in this case are true when abt the quadrature
the moon’s apse line passes through the sun or it is ab rigkt angles
to the line joining the earth and the sun.* In the general case his
construction does not lead to the elegant form of the evection term
as we know it now, nor does it lead to the nice form in which
it was given by later Hindu astronomers from the time of Maiijula
(or Munjila, 854 Saka era=932 A.D.).

As has been alveady pointed out, the early Hindu astronomers
from Aryabhata to Brahmagupta aimed at accuracy in lunar calcula-
tion only for the eclipses and syzygies, and did not interest them-
selves about the moon’s longitude at the quadratures. Hence this
second inequality is absent in the works of these makers of Indian
astronomy, as also in the Pre-Ptolemaic Greek astronomy. Thia
points to the conclusion that in both the earlier Hindu and Greek
sysbems of astronomy, the modes of obscrvation of the moon were
copied from an earlier system of astronomy whether Babylonian or
Chaldean. Tven in the Romaka Siddhanta of the Pacasiddhantikd
there is no mention of evection.} Thus inspite of the transmission
of a vague system of Greek astronomy, Hindu astronomy as develop-
ed by Aryabhata and Brahmagupta must be regarded as independent’
and original—not only from this but also from other considerations.-
It sought to correct the constants as were obtained from the
Babylonian and the Greek systems as has in some cases been shown

already.

*  Godfray's Lunar Theory, pp. 108-110.
t Vide the summary in the writer's paper ‘‘ Aryabhata the Father of Indian
Iipicyclic Astronomy.’’ Journal of the Department of Letters, Vol, XVIII, Calcutts

University Press.
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8d I. Manjula’s Second Equation of the Moon (982 A.D.).

We now take up in detail Mafijula’s second equation of moon.
It is however necessary to say something about his firsb inequality.
This is given in the form

—488 sin (ni—a/)
oot 468 - degrees,
10 cos (nt—a')

where 7' stends for the moon’s mean longitude, o'— that of the

apogee.

Hence when nt—a/=90°, the equation = ‘3-823 —5°4/=804' show-

ing an excess of 4/ over the modern value.

Tt is further necessary to modify the expression for the moon’s ’

modern form of the equation by changing a to 180° +a, a8 in Hindu
astronomy anomaly is measured not from the perigee but from the
apogee.
The modified form is
= —801/ sin (nt—a) + 13 sin 2(nt—a) ... o e
—152 sin (nt— @) cos (® —a) +40' sin 2 t—@) + ...
Magjula’s lines giving the second equation are—

TR i fawar faa |

7@ A DRI T ML
w@ T-aE A aE @iy |

W = ¥ ga |duEasTgr 1t

This may be translated as follows:—

«The (mean) daily motion of the moon diminished by 11° and
multiplied by the ¢ cosine’’ of the longitude of the sun diminished
by that of the moon’s apogee is the multiplier of the ‘‘sine’’ and the
+ oosine’’ of the longitude of the moon diminished by that of the sun,
divided severally by 1 and 5. The results taken as minutes are to
be applied negatively and positively to the moon and to her daily
motion if the quantities multiplied together are of opposite signs and )
in the reverse order if they are of the same sign.”

As to the positive or negative character of the ‘‘sine’’ and the
*cosine’’ he gives tHe rule—

v Qr@ifra; d% wy ghedan g |
wad; g F Tt |

«“ The mean planeb diminished by its ucca, the apogee, aphelion
or the Sighra, is called kendra or mean anomaly ; its ‘'gine’’ from
gbove six signs (180°) arises from half circles and are respectively
positive or pegative and its ‘‘cosine” in different quadrants are
reapectively positive, negative, negative, and positive.’’

The convention followed is that the ‘gine’ is negative from
0° to 180° and positive from 180° to 360° of the arc and that the
cosine is positive between 0 and 90°, negative between 90° and 270°
and positive between 970° and 860°.

‘We may now symbolically express Mafijula’s second inequality
thus :—

- (13° 1¥ 35/ —11°) x 878’ cos (® —a) x 878 sin (D— @)
where ) stands for the moon &3 corrected by the 1st equation; we
leave out the correction to the moon’s daily motion as given in the
stanzas quoted above.

The moon’s new equation comes out to be
— —148' 58 cos (® —a) sin H-©®).

This, it will be seen, is exactly the modern form of the evection
as combined with a part of the equation of apsis gshown before. The
difference in the main is that Maiijula’s constant is 144, a quantity
less by 8. In form the equation Is most pef-fect, it is far
superior to Ptolemy'’s, it is above all praise. It in from this
inequality, we trust, that Maifijula should have an abiding place in
the history of astronomy. The next writer who gives the second
equation is Sripati (1028 A.D)). :

3d II. Sripati’s Second Inequality of the Moon (1028 A.D.).

The following stanzas from Sripati’s Siddhanta Sekhara, were very
kindly communicated to me by Pandit Babua Misrs, Though they
are probably not very correct still the general meaning is clear.
They are the following :—

Fawfacfeaas NTERgSE
mrrgafafl wergset faw |
wafd gTRare aquERE W
vmﬁmﬁﬁmﬁw‘i‘u 0
—E LR Ll
gfgmfrcaay AR |
azfmaTirmfegd a1 g
wpzaTAerdt Wi feeEa o
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afufa stqwr@ @ Agdlang
qEugaYd SgEaAHNE |

afz wafy fe 9 wdag fabay
whzwfaagde @ frefiee |

The passage may be translated thus:—

“ From the moon’s apogee subtract 90°, diminish the sun by the
remainder left; take the ‘‘sine’’ of the result; multiply it by 160/
and divide by the radius; the result is called caraphala. Put it down
in another place, multiply it by sara (i.e., R vers () —u), or versed
sine of the moon’s distance from the apogee) and divide by the
difference between the moon’s distance (hypotenuse) and the radius;
the result is called parama (cara) phala, which is to be considered
positive or negative according as the hypotenuse put down in another
place is less or greater than the radius, Multiply the ‘‘sine’’ of the
moon which has been diminished by the apparent sun, by the
apparent paramaphala and divide by the radius; the final result is to
be called caraphala to be applied to moon negatively or positively as
the moon minus the sun and the sun minus the moon’s apogec
(diminished by 90°) be of opposite signs; if these latter quantitics be
of the same sign the new equation should be applied in the inverse
order by those who want to make the calculation of the apparent
moon agree with observation.”’

Symbolically —

160" R sin {®~(a—90°)} _ curaphala
R !

¢160' Rsin {®~(a-90)°} R wvers (D -a) _
X =
R H-R
paramaphala, according as H > or << R.

The new equation

_+ Rsin(D-@)
=7F —

:X paramaphala

=T 160’ R sin {® —(a—90°)} R vers (D —a) x R sin (D - @)
RH-R)xR

160 R cos (® —a) xR sin (D)~ @®) R vers () —a)*
X e e

RExR H-R

¥ There is some uncertainty about this new fraction introduced by Sripati.
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This equation is a slightly modified one but practically the same
in form as that of Maiijula, except that the constant here is 160/,
greater than his by 16/. The constant is 160/ also in Candradekhara’s
form as we shall see later on. We next consider the Moon's
inequalities as given by Bhaskara Il in his Bijopanaya,* a special
work on these inequalities composed in the Saka year 1074 (=1152
A.D.) two years after he had composed the Siddhanta Siromani.

8d III. Bhashkara II on Moon's Inequalitics (1152 A, D.),

His preliminary statement runs thus :—

fort fafieawdifear @ gaEren weewifaae
FERAEE-GAUA HAt dATETG] WA 1
Bijopanaya, St. 8.

*¢112! positive or negative representing the maximum difference,
have bLeen found by me in the daily observed moon (as calculated
and as observed) at that point of the ccliptic where the arc from
the kadamba (i.c., its pole) passing through the zenith cuts it.”’

Thus for observing the moon he selected the nonagesimal as
the suitable point where the uncertainty about her pdrallax is zero,
and found 4+ 112/ of are to be the maximum difference between her
calculated and observed places,

Mallabhatta, perhaps a contemporary of Bhaskara II, ascribed
this difference to a supposed Sighrocca of the moon. Bhaskara in
stanzas 9-13, refutes the existence of the Sighra in the case of the
moon, the substance of his argument being (i) that it is against the
teaching of the Saryasiddhanie and other accepted authorities,
(i) that there iy no variation of the apparent angular diameter of the
moon corresponding to this alleged Sighra, and (iif) that planets
having a Sighra have retrograde motion which is never the case
with the moon.

The redson for his new equations are stated as follows:—

FFIRI@UREIE AN e |
9 IRIGEH WIET TR 1Rel
asaluTAEy I8isa yada: |
UTEH GEeEd yAET gatEa nRel

*  TPublished by the Punjab Sanskrit Book Depot, Linhore, 1926.
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gxgs F N 9 wrrErEee af |
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* When the moon is situated at o quadrant ahead of the apogee
and with the sun at half a quadrant ahead of her, the maximum
discrepancy {of 112') is seen in the negative character.

* When the moon is situated at three quadrants ahead of the
apogee and with the sun at half a quadrant behind her, the maximum
discrepsncy (of 112) is seen in the positive character.

‘“ When the eclipses of the sun and the moon take place ab the
apogee or the perigee of the moon the moon as corrected by the equa-
tion apsis is seen to be without any new correction called bija.

‘* When the eclipses of the sun and the moon take place at the
ends of the odd quadrants of the moon’s anomaly (measured from the
apogee), the discrepancy is seen to be less by 34/,

‘““When the moon is at the apogee, whether the sun be ahead or
behind her by half & quadrant, the discrepancy amounts to be 34/,

** The same discrepancy of 34’ is observed when the moon is' ab
the perigee and the sun is ahead or behind her by the same distance.

‘‘ Thus by analysis and synthesis, and by repeated observations,
this variable correction has been devised by me: let it be seriously
considered by the learned.”’

Bhaskara here speaks of six cases and we consider them one after
another:—
The moon’s equations as modified o suit siddhantas are given by
~B801/ sir. (nt—=a)+ 18/ sin 2/nt —a)......
~152! gin (nt— @) cos (® —a)+40 sin 2(nt— @) + ...
According to Bhaskara’s Siddhanta Siromani, the moon’s equation
of apsis
_B1° 86/

m=e— ! 3l p—
TG 3488 gin (nt—a)

= — 301’ 46/'8 gin‘(nt —a)
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this agrees well with the corresponding term of the modern equation.
As Bhiiskara takes in all thé six cases, nt—a=90°, 270°, 0° or 180°,
the second term of the equation of apsis vanishes.
Case I.
nt—a=90°, nt— @ = —45°, @ —a=135°
Here the total equation of the moon
= —301/— (76! + 40’y = - 801 — 116/
this fairly agrees with Bhiskara’s observation, the difference being
only of 4/,
Case 11,
nt—a=270°, nt— @® =45°, ® —a=225°;
the total equation of the moon
=801/ + 76/ + 40/ =301/ 4+ 116/,
this also agrees with Bhaskara’s observation.
Case 111,
nt—a=0° or 180°, nt— ® =0° or 180°, ® —a=0 or 180°,
the total equation=10/, this also agrees with Bhaskara’s obgervation.
Casge 1V.
nt—a=90° or 270°, nt— ®=0° or 180°, ® —a=90° or 270°,
the total equation= F¥301/. This does not agree with Bhaskara’s
gbatement that the total equation
= T (301 +78/).
Case V.
nt—o=0, nt—@®= +45° @ ~a=+45
the total equation
=0/ =T6'+40/= — 86/ or 0/ + 76/ — 40/ = + 36/,
this fairly agrees with Bhaskara’s observation.
Case VI, ‘
nl~a=180°, nt— @ = +45°, ® —a=180° F45°,
the total equation
=0 +76' +40'=0' + 116/, or 0/ =76’ + 40/ =0/ — 86,
thig does not agree with Bhaskara’s statement.
Bhiiskara then states his first system of 24 equations correspond-
ing to 24 sines in a quadrant to be
6, 18, 21, 27, 83, 80, 45/, 51/, 56/, 61/, 65/, 68/, T0/, T2, 741, 5",
75, 764, 76!, 17, 17, 781, 18!, 78/ *

*  Bijopanaya, 26-28.
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These equations he says—
* * * S BE |/Y

YR Y ' AW GFaH NS

““ are negatively added to the equation of apsis when that is negative
and positively added to the same when that is positive.”” In other
words his new equations are complements of the equation of apsis,
the two together being represented by
—801/ 46/ 8 sin (nt — o) ~ 78! sin (nt—a)
i.e., by —879 46" 8 sin (nt —a).
Hence next states his sccond sot of equations depending on
®-D to be
o, o, 18/, 17!, 22, 24/, 27/, 8(¥, 82/, 38/, 34/, 84/, 84/, 33/, 31/,
201, 26/, 24/, 207, 16/, 11/, 8/, 81, O/, *
and says
Tqn w1 WAL wY G
4+ qea wafd ¥ |

“These minutes are ncgative in the odd quadrants of the argu-
ment and are positive in other quadrants.”

When the value of the argument is 15° the equation is 17/,

45° - 34/,
. " . 90° " 0.
Hence the new equation= —84/ gin 2(® - V),
=84/ sin 2(3—@).

Here the symbol D stands for the moon as corrected by the
Hindu equation of apsis and its complement as given by Bhaskara.
It is readily seen that Bhaskara is the first of all the Hindu astro-
nomers to detect the equation known as ‘* Variation.’” His constant,
84/, is less than the modern value by about 6/, and cannot be
considered as a serious error.

We now see that the sum-total of the moon’s equation as given
by Bhaskara

= —3879/ 46/°8 sin (nt —a) + 84/ gin Q(D -®),
the evection term being totally absent. This is a serious defect,
and Bhaskara’s new equations would make the moon generally
more incorrect at the syzygies and eclipses than what the old Hindu

3 1] ”»

equation of apsis would do.

¥ 1bid, 29.32,
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Perhaps late in life when he was 69 years old in 1105 of Salka era
(=1183 A.D.) he discovered the inapplicability of his new equations
at the times of eclipses ond in his Karapae-kutihala he altogether
omitted these new equations which he had given in his Bijopanaya.

As to Bhaskara’s second inequality which is really the comple-
ment of the equation of apsis without the evection term, it is far
inferior to that of Manjula and of Sripati; as we have seen their form
of the second inequality combines the complement of the equation of
apsis and evection in the mathematically correct form. ¥or the
discovery of such a form of the equation as of these authors, very
patient. careful and frequent observation must have been coupled
with very careful and nice comparison of observed facts.

Ag to ‘'‘variation” it was first discovered by Abul-Wefa in
976 A.D.,* which was quite forgotten when Tycho-Brahe re-discovered
it in 1580 A.D. Hence Bhiskara, in 1152 A.D., re-discovered it in
Indis 4 centories teiire Tyehs. .

8d 1V. Candradckhara of Orissa on the Moon’s Inequalities.

In connection with lunar inequalities it is necessary here to
record what were the equations discovered or verified by M. M.
Candragekhara Simha of Orissa in the later half of thé last century.
He was educated in the orthodox Sanskrit fashion and had no
acquaintance with English education. His work Siddhanta-darpapa
was edited by Prof. Jogeschandra Ray, late of the Cuttack College,
in 1899. Candrasekhara in his work gives four equations of the

moon which are :—

(1) The equation of apsis.
(2) The Tungantara equation or the complement 6f the equation
of apsis in combination with evection.
(8) The fortnightly equastion or variation. :
(4) The Digaméa equation or the annual equation (i.e., 3, of the
sun’s equation). -
(1) The first equation is of the form
_ {81°80/ =80’ cos (ni —a)}8488 x sin (nt—a) |
360°
= — 800/49"5 sin (nt —a) +4'46'"°5 sin (nt —a) cos (nt—a)
= —800'49"°5 {sin fit —a) +2/23/°25 sin 2(nt— ).

* Q@odiray's Lunar Theory, p. 114,
t Siddhanta.darpapa, V, 100-114,
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It is seen that Candradekhara wanted to correct the equation of
gpsis to the second order of small quantities as in all the Hindu
authors from Brahmagupta, but Candragekhara’s form is correct
though his constant is wrong.

() His second equation is of the form

160’ x 3438 5in (a— @+ 007) 3488 8in (D~ ©)
8438 3438

, moon’s appt. daily motion *
moon’s mean motion

moon’s appt. daily motion
moon’s daily mean motion ’

=—160' cos (@ —a) sin (D-@) x

. Here the constant is the same as that of Sripati discussed before.
The symbol M means the moon as corrected by the equation of apsis.
It is readily secen that the constant of the first term of the equation
of apsis is increased by 80/, and that the constant of evection is
taken at 80’. In both the cases the error is about +4’.

(8) Candragekhara’s third equation or Variation
8488/ sin2 (D' - ®)

= ' 55 = 88/ 12" sin 2(), -~ @), 1

v{rh‘ere V), means the moon as corrected by the 1st and 2nd equations.
Here the constant is wrong by —1/ 18",

AN

(4) His fourth equation cr the annual equation

[y

=4 o of the sun's equai;ion'_'of apsis,

- + 1_10 ><'123>:3(E;438

=41V 276 sin (sun’s distance from the apogee).

The modern value of the constant is 117 10”. Tycho found it to
be 4/ 80", Horrocks' (1689) co-efficient was 11/ 517,

As Candrasekhara was aware of Bhaskara’s Bijopanaya, as also

of the work of Sripati, his merit here lies in the discovery of the
_annual equation, and correction to the constant of variation.

sin (sun’s distance from the apoges),

* Ibid, VI, 7-9.
+ Siddhanta-darpana, VI, 11-12,
‘1 Ibid, VI, i3,

Ll
4, Conclusion.

We have now come to the end of the paper. Perhaps it has
been establishéd that so far as the luni-solar astronomy is concerned
Hindu astronomy is independent of Greek astronomy in respect of
astronomical constants, that Hindu astronomy is generally more
accurate than Greek astronomy and that Hindu astronomers were
not mere ‘‘calculators.” * There were observers who verified and
corrected the old astronomical constants as they came down from
Aryabhata and Brahmagupts, who also found independently all the
principal equations of the moon.

% @, R. Kaye, Hindu Astronomy, p. 60.



APPENDIX II

GREEK AND HINDU METHODS IN SPHERICAL
AsTroNOMY

1. The Aim of the Paper.

The aim of this paper i8 to present a comparative view of the
Greek and Hindu methods in Spherical Astronomy and to bring- out
the independence of the Hindu Astronomers in this subject. This
comparison has not yet been properly made in the works of any
European researcher from Colebrooke and Bentley early in the
19th century to Kaye in the present century. Nor have the Hindu
methods in Spherical Astronomy been yet properly described in the
writings of Burgess, Wilkinson, Bapudev Sastri and Thibaut. Hence
we find Kaye writing in J.A.8.B. for 1919, No. 8 :—

** The methods by which (the rules) were obtained are buried in
obscurity.”” Braunmihl* has stated ‘‘that the Indians were the first
to utilise the method of projection in the Analemma of Ptolemy.”’ It
is intended to present the Hindu methods as clearly as possible
and to show that Braunmiihl has not done sufficient justice to the
Indian astronomers.

As to Kaye, we ghall show that h;x remark quoted above is due to
the fact that he had to rely mostly on the English translation of the
Saryasiddhanta of Burgess, that with his scanty knowledge of
Banskrit could not study the works of Bhaskara II (1150 A.D.), who

- was the first to explain the Hindu methods clearly,

2. Greek Methods in Spherical Astronomy.

Of the Greek methods in Spherical Astronomy, the history begins
with elementary principles only from Euelid (300 B.C.). Even in
* Heath, Greek Mathematics, Vol. II, p. 291,
Braunmihl, Geschichte der Trigonometrie, pp. 98-49.

.

Theodosius’ Sphacrics® (about 153 B.C.) ‘‘there is nothing that can
be called trigonometrical.”” Heath again says, ‘‘the early spheric did
not deal with the geometry of the sphere as such, still less did it
contzin anything of the nature of the spherical trigonometry. (This
deficicney was afterwards made good by Menelaus’s Sphaerica.)’’t
Hence the Greek spherical trigonometry began with Menelaus
(90 A.D.). His theorem in geometry is well-known—*‘If the sides
of a plane triangle be cut by a transversal into six segments, the
continued product of any three alternate segments is equal to the
continued product of the remaining three.”” From this proposition
he deduced the so-called ‘‘regula sex quantitatum’’ or the theorem,
““if the sides of a spherical triangle be cut by an arc of a great circle
into six segments, the continued product of the chords of the doubles
of any three slternate segments is equal to the continued product of
the chords of doubles of the remaining three segments.’’ In plane
geometry if the sides BC, CA, AB of a triangle be cut by any
transversal at L, M, N, respectively, then we have

BL CM AN _,;
LC MA'NB

In spherics the theorem is:

Chord 2BL _ Chord 2 CM _ Chord 2 AN

Chord 2 .C ™ Chord 2 MA~ Chord 2 NB3*

[

Both these theorems are proved in Ptolemy’s Syntaxis (Karl
Manitius’s edition, Vol. I, pp. 45-51).

If R be the radius of the sphere on which the spherical triangle
ABC is constructed, then the chord of the arc 2 BLL.=2 R sin BL,
Hence Menelaus's theorem in spherics may be expressed as follows:

sin BL N gin CM y sin AN

et S =1
sin LC sin MA sin NB

This theorem is true for any spherical triangle.

*  Heath, Greek Mathematics, Vol. IT, p. 250.
+ A. A. Bjérnbo, ‘Btudien iiber Menelaos’ Sphiiik’ in Abbandlungen Zur
Geschicbte der Mathematischen Wissenschaften for 1002, pp. 89 et seq.
Also, Heath, Greek Mathematics, Vol. IT, pp. 26178,
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"It /{B=AN=AM=90° and L the pole of AB, then LMN is a
sécondary to the arc AB, There are four ares of great circles;
taking any three as forming a spherical triangle and the fourth as
the transversal we readily get for the right-angled triangle ABC,
the relations :—

(i) sin a=gin b gin A
(i{) sin c=tan a cot A
(#ii) cos b=cos a cos ¢

(iv) tan c=tan b cos A

The above are pome of Napier’s rules for a right-angled spherical
triangle, deducible from Menelaus’s theorem.* They are generally
sufficient in the case of such triangles. In any spherical triangle
however, this theorem of Menelaus does not in any single step lead
to any of the equivalents of the time-altitude or altazimuth equations
in spherical astronomy. The Hindu methods, though none of them
are 80 highly finished as Menelaus’s theorem, yet are not less power-
ful in tackling the problems that arise in astronomy in connection
with the apparent diurnal motion of the heavens. The Greek or
Ptolemaic methaod presents no further pcints of interest except in
its application. We now proceed to illustrate the Hindu methods
and shall refer to the Ptolemaic method as occasion arises.

8. Hindu Methods in Spherical Astronomy.

In the Hindu methods there is no general rule to follow. It is
by properties of similar right-angled triangles that a fairly complete
set of accurate formule are obtained. These right-angled plane
triangles are classified under the names,—‘Krantikgetras’ (triangles
of declination) and °‘Akga-kgetras’ (triangles of latitude). We
consider the following problems:—

Problem I.—~To find the time of rising on the equator of a length
I, of arc of the ecliptic measured from the first point of Aries.

Let w be the obliquity of the ecliptic and R.A. the right ascension

* Three more can be deduced similarly, namely,
{v) sin ¢:~gin b gin C
{vi) sin a=tan ¢ cot C
(véi) tan as=cos C tan b.
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corresponding to the longitude !, and 3, the corresponding declina-
tion. ‘The Indian form of the equation is

*R sin R.A. = T TR were R is the radius of the

sphere.

Note.~—If R be the radius of the circle of reference, the Indian
trigonometrical functions for the arc 8, are (1) the ‘sine,’ (2) the
‘cosine’ and (8) the ‘versed sine.” They are respectively equal
to R sin 8, R cos ¢ and R vers 6.

In the adjoining figure, O is
the centre of the armillary sphere,
¥Q, ¥C are gquadrants of the
equator and the eclipfic, respeec-
tively. P is the celestial pole,
PCQ the summer solstitial colure.
Join Oy, 0Q, OP and OC,

Let y8 be =1, yM=R.A., CQ
=/ SyM=0u, SM=34.

Join OS, OM. PSM is the
secondary to the equator.

From C draw CK perpendicular to 0Q. From § draw Sm and
Sn perpendicular to OM and Oy, respectively. Join mn and from
M draw MN perpendicular to Oy.

Then the friangles Smn snd CKO are similar. They are called
¢ Kranti-ksetras 't or declination triangles—similar right-angled
triangles having one acute angle =w,

. Sm; 8n=CK: OC

or Rsind: Rainl=Rsin »w : R

RsinS:REinl' R sin o o M

%  Aryabhatiya, Gole, 25. Vardha-Mihira in the Poficasiddhantika IV, 92)
o V(R Sin? 1)—R3§int . )
states it in the form 2R — SReos 3 =R sgin R.A., which is evident from

the figure. Brahmagupta's equation is identical with that of Arpsbhata. B. 8, III,
15, Saryasiddhanta, 111, 40-41. Also Bhaskara II, Grahaganita, Ch, VIII, 8. 54-55
is in agreement with VarBba-Mihira's form,

t Bhdskara, 11, Goladhydya, VIII, 43.44.
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Greek Method :
In the same figure* let PSC be the triangle and yMQ be the
transversal. Then Menelaus’s theorem gives
sin PM x sin Sy ><sinCQ =1
sin MS  sin yC sin QP
1 sinl  sin o =1
sind 1 1
or sin 8=sinl. sin w.
Hindu Method :—
Again by the Hindu method from the same two similar triangles

or

we get
mn : n8=0K : OC

or, mn ¢ Rsinl=Rcosw : R
_RsinlxRecosw
mp= L LT
Again MN : mn=0M : Om
i.e., R sin RLA.: mn=R: R cos 8

. _RsinlxRcosw
R Bln R.Au— W tre (2)

Greek Method:
Taket PQM for the triangle and ySC for the transversal. Then,

sin PC « sin Qy x sin M8

B e =1

sin CQ ~ sinyM ~ sin SP

csw 1 N 8in & =1

" Sne saRA " cosd
or sin R.A.=tan 3 cot w,
The Hindu form of the equation is different from that of
Ptolemy’s. It is also better for the purpose of caleulation.
Note :—From the same two similar triangles we have
On : ON=Rcosd : R
On=TR cos I= R cos R.f{.XRCOSS ‘ B

* Manitius's edition of the Syntaxis, Vol. I, pp. 51-53.
+ Ibid, pp. 55-56. :

.

AL LISINIIEA L e

Again, tan R.A, = 2%
on

_RsinIxRcosw
T TRxReosl S

Again, mn : 8m=0K : KC

or mn= -

. _MN _ R Rsin 3xR cos w
Rsin R.A.= o XS o T Remo T (5)

Problem II.—The problem discussed above provides the method
of finding the sidereal time-intervals in which the signs of the '
zodiac rise on the equator. To find the corresponding times at any
latitude ¢ it is necessary to calculate and apply what is the asceusional
diffcrence due to the elevation of the celestial pole. This ascensional
differcnce is called ‘carakala’ or the variation in the length of half
the day. The ‘sine’ of this ‘carakala’ is called ‘carajya.’ If ch
denotes this * carekila,’

. Rsin gxRsin §xR .
then,* R h= .
hen sin. ¢ R cos ¢ xR cos &

Just as in the solution of
the previous problem, the decli-
national triangles or * Kranti
kselras’ were constructed and
used, so in the solution of this
and other problems, another
set of similar triangles were
conceived and constructed and
were given the name, °Aksa-
ksetras,” 1

Let NPZH be the meridian,
NOH the north-south line pass-
ing through the observer O, P the celestial pole, OQ the trace of the
equator on the meridian plane, Z the zenith. Join OZ. From Q

H

*  Aryabhatiya, Gola, 26; Pafica-siddhantika, IV, 34; Brahmasphutasiddhanta,
11, 67-58 ; Sarynsiddhanta, 11, 91 ; Grahaganite, VIII, 48-49.

+ Bhaskara, Goladhyaye (Wilkinson and Bapudev Sastri’s tr.) pp. 178-76; also,
Bhaskara, Grahaganite, Ch. IX, 13-17,
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draw QM perpendicular to OZ. Then the triangle QOM is an
*Akga-kgatra’ or a latibudinal right-angled triangle, as 2 QOM =g,
the latitude of the station. Another ‘Akgalk,efra’ is thus conceived,
in the same figure, let P, P’ be the north and south celestial poles,
N the north point, ABA'B’ the diurnal circle of a heavenly body
with declination 8, NEHW the horizon, PEP'W the six o’clock
circle, Here AA’ the line of intersection of the diurnsl circle with
the horizon is called the ‘' udaydsta-sitra’’ * (or the thread joining
the rising and setting points). S8’ the line of intersection of the
diurnal oircle and the six o’clock circle, is the horizontal diameter of
the diurnal circle. From 8 draw SK and 8L perpendiculars res-
pectively to AA’ and BW. Join KL.

Now since PN=¢, the latitude of the station, in the small right-
angled triangle KL, the ZKI.S is also =¢
BK : SL=QM : MO

SL x QM R sin § xR sin ¢
[4) SK: —_———— = C e e—,
r MO R cos g
Now 8Kt is a ‘“‘sine’’ in the small circle ABA/B’ of which
the radius is R cos & ; this ‘“‘sine’’ reduced to the equator (radius R)
is the ‘sine’ of 'cara.’
R sin ¢ch= R sin EPA
- RsindxR sin pxR
RcosopxReosd

Greek Méthod:
Let 1 the arc PA be produced to meet the equator at C. Take
PCQ for the triangle and EAN for the transversal. Then we get,

sin PA  sin CE _ sin Q'N _,
sin AC sin LQ'  sin NP

cosd sinCE | cosgp _,

" sind 1 sin ¢

8in ¢ X 8in 3

sin Cl=sin ch = .
Cos ¢ X CO8 O

* Bhaskara, Qola, VIT, 89.

+ 'This is called by the name * kujya’ or *kgitijya,’ i.e., earth-sine., Arvyabhata,
Qola, 26, Brahmagupta, 11, 57, Siryasiddhanta, 11, 61, ete.

1 Manitius, ibid, p. 84.
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Notc.—The perpendicular distance between AA’ and EW is called
the ‘sine’ of the amplitude or the ‘Agrd’ which is thus caleulated : —

KL : L8=Q0 : OM
* R sin amplitude=‘Agrda’=KIL

= L8xQ0
oM

_Rsindx

It is now evident that the Hinda method is different from
the Greek method in this case also. As the triangle KLS is
difficult to show in the diagram, it is shown in its projection on the
meridion plane in Burgess’s translation of the *‘Sirya-siddhanta,”
(page 232) and also in Wilkinson and Bapudev Sastri’s translation of
the ‘Siddhanta Siromani,” p. 175. This has led Brauamiihl to
assume that the Hindu method of arriving at the equation of
ascensional difference and some other equations of spherical
Astronomy has its origin in the Analemma of Ptolemy. 4 careful
study, however, does not justify the identification of Hindu methods
with the graphic method of the Analemma, which is deduced from the
projections of the position of @ heavenly body on the meridian prime
vertical and the horizon. It is being presently shown that what was
done out of difficulty in drawing the figures properly has been taken
by Braunmiihl as a Greek connection.

tProblem I11,—To find the ‘‘time-altitude’” equation by the
Hindu method.

If from any point S on the diurnal circle a perpendicular be
drawn to the Udaydsta-Sitra spoken of before, this perpendicular
is called the cheda or ‘istahrti.” The perpendicular from 8 on the
horizon is called ‘Sanku,’} the sine of the altitude. The line joining
the foot of the ‘Sanku’ and that of the perpendicular on the
‘Udayasta-Sitra’ goes by the name of “Sankutala’ and this Sankutala
lies to the south of the *‘Udaydsta-Siira’ during the day.

*  Aryabhats, Gola, 30, etc.

t Aryabhata could not arrive at the true equation. Cf. Gola, 28. The correct
rules occur in Paficasiddhantika, IV, 42-44 ; Brahmasphatasiddhanta, 111, 88-36, 26-40;
Siryasiddhanta, I1T, 34-85.

I Bhiskera says—qGRTATAM: TF: | q€@ AegeA@qAE A wafq ) Gola,
VIII, 39-41. Aryabhata uses the term ma'q;{', Gola, 29,
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In this figure if AA’ be the ‘Udaydsta-Siitra’ or the intersection
of the diurnal circle and the
horizon, and 8 a point on
the diurnal circle denoting a
position of the sun, SK, 8T,
perpendiculars on AA’ and
the horizon respectively; SL
is called the ‘Saiku,” 8K
the ‘cheda’ and LK the
‘Sankutala.’ In this triangle
KB8L, the angle KSBL was
recognised to be the latitude
of the station.

Thus the triangle 8KL is
not taken in its projection on the meridian plane. The side SK is
taken as formed of two parts. Let CC’/ be the line of intersection
of the diurnal circle and the ‘Six o’clock’ circle EPW. Let 8K cut
CC!’in M. Then,

SK=8M +MK

Here 8M, the ‘sine’ in the diurnal circle of the complement of
the hour angle is given & distinct name ‘Kald’* and MK as explained
before is known by the name ‘Kujya,” This ‘Kald’ is constructed
from the point 8 in the diurnal circle. Thus the triangles like SKL
were not taken in their projections on the meridian plane as
Braunmiihl would suggest.

From the triangle KSK, we get,

‘Cheda’ : ‘Sanku’=R : R cos ¢, where ¢ is the latitude of the
observer;

‘S8anku’ is here=I cos Z, Z heing the Sun’s zenith distance.

Reos ZxR

.. ‘cheda’= R cos ¢
" Now ‘Cheda’ =radius of the diurnal circle+ ‘Kujya’—versed sine
of the hour-angle in the diurnal circle t+O'B + 0'V —BR,

R sin 8xR sin ¢ _Rvers Hx R cos &

= 3
R cos 8+ R oo ¢ R ,

* Bhaskara’s Grahaganita, VIII, 65.
t O’ is the middle point of CC’ or it is the centre of the diurna! circle ABB'.
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S =R_§§n8stin¢)

(As in the previous problem, Kujyi= Koo g

p Tgon 7o T {m sindxlioing, T 1 yer H}
The above equation simplified becomes
cos Z=sin 8§ sin ¢+ cos & cos ¢ cos H.
In this connection we consider the altazimuth equation by the
Hindu method.
*Proplem IV.—The Altazimuth Equation :—
Let a denote the azimuth of the sun from the south. In the
same triangle SKL in the same figure, we have,
LK : SL=Rsin¢ : Rcosg,
or, ‘Sankutala’ : ‘Sanku’=Rsin¢ : Recos¢

¢ Suidutale = T.C08 A Rsing,
R cos ¢

Now ‘Sankutala’ is made up of two parts, namely ‘Bdhu’ and
‘Agrd," of which the former is the distance of L from the observer’s
Bast-West line; the ‘ Agra’ has been already found.

R sin Zx R cos a and

Here ‘ Bdhu'’'= R ,

. -, _RsindxR
Agra " Rooap

‘ Sankutala’="* Bahu '+ ‘Agrd’

0 Reos ZxRsing _ RsinZxR cos_a+R gin 8x R
"™ T TReos ¢ ) R R cos ¢

or, T sin 3= R.0089 (R cos ZxRsing _ RsinZxR cosa )

R Rcos ¢ R

which is easily seen to be equivalent to

» 8in d=cos Z sin ¢ ~sin Z cos ¢ cos a.

% The equivalent of this, in a particular case, i¢ first found in Bralmasphita-
siddhanta, Ch. 113, 54-66. Cf. Suryasiddhanta, 111, 28-81, also Bhéskars, Grahagatita,
1X, 60-59.
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“Greek Method:

Ptolemy * has also a method of finding the Sun’s altitude at any
hour of the day. His method is as follows :—

() He would find by means of his tables for the times of
risings of the signs of the zodiac, the orient ecliptic point. (ii) He
would then find the culminating point of the ecliptic. (iii) He
would finally apply Menelaus’s theorem in spherics thus: —

Let ASC be any position of the ecliptic, NZC the meridian,
C Z NAMH the horizon, Z the
zenith and 8, the Sun. Here
the celestial longitudes of C,
8 and A are taken to be
known; hence ZC and CH are

also known.

N Now take ZCS for the
triaongle and HMA to be the
transversal; we then have by
Menelaus’s theorem,
sﬂ_ﬁxsw xsin._S.M=1
gin HC ~ sin AS  sin MZ

\ o §M= 008 CZxsin AS
or, sin 8 in CA

1t is thus clear that Ptolemy had no direet method for connecting
the Bun’s altitude and the hour-angle. This method is workable
for the problem *‘given time find the altitude ”’ but is not workable
in the converse problem; besides, the calculation of the longitudes
of A and C is very cumbrous.

Again, when EA has been found out, taking ZHM for the triangle
and CSA for the transversal, we get,

gin HA _ sin M8 s8inZC _
sin AM X i B7 X = OH =1, whence AM and thence

HM, the azimuth can be found. The method is here also cumbrous,
there being mno direct connection between altitude and azimuth ;
besides the time-element is not avoided.

* Manitius, ibid, pp. 118-19.
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4. The Analemma of Ptolemy and the Hindu Method.

When the Sun’s declination is zero and his hour-angle is H,
Zeuthen * following the method of the ‘Analemma’ of Ptolemy,
as explained by Braiinmuhl,} has deduced the following equations:

(1) cos Z=-cos H cos ¢

@ tena=20T,
sin ¢

"To these two Heath following Braunmiihl, adds

tan H1
(8) tan ZQ= W ,
where 7 is the zonith and Q is the point of intersection of the prime
vertical and its secondary passing through the Sun and the north-
south points.
Zeuthen § points out that later in the same troatise Ptolemy finds
the arc 2B described above the horizon by a star of given declina-

tion &, by a procedure equivalent to the formula,
(4) cos B=tan ¥ tan ¢.

With regard to the « Anglemma’ of Ptolemy, it may be noted,
as Heath| says, that “‘the procedure amounts to a method of
graphically constructing the ares required as .parts of an auxiliary
circle in one plane.”’ Many things may be, in practice, done
graphically far more casily than by the theoretical method. Besides,
no theoretical calculations —oceur in the * Analemma’. Zeuthen,||
following the method of this work, has deduced in the general case,
the two equations

(5) fcos Z={cos $ cos H +sin 8 tan ¢) cos ¢.
cosdsin H

(O) WO _aind (055 con H+sin 8 tan ) sin '
—cos¢+ CcO8 0 cO8 sln an¢ ¢

P

Heath, UGreek Mathematics, Vol. IT, pp. 290-91.
Zeuthen, Bibliotheca Mathematica, 14, 1900, pp. 23-27.
t Braunmiihi, ibid, pp. 12-13.

*

. L . Rsin HxR
t+ The Hindu form of this equation is It sin 7.Q= Jﬁflﬁ?m?m

Bhiskars's, Goladhyaya, Com. on VITL,.67.
§& Bjornbo, loc. ¢it., p- 886,
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These equations are suggested to a modern reader from a sbudy
' of the figures in the ‘Analemma.” But neither in this work
nor in the ‘Syntaxis ’are they to be found. With regard to
the first four formulm it is possible that they were recognised
by Ptolemy. With regard to the last two, Zeuthen * remarks
““mais le texte nen contient rien;”’ and they were certainly not
recognised by Ptolemy.

Besides the tangent function is wholly absent in Greek trigono-
metry. They are also different in form from those arrived at by
the Hindu method as explained before. Thus, it is clear that the
Hindu methods are in no way connected with the method of the
* Analemma.’

Even taking for granted that the Hindus followed a method of
projection much allied to the method of the ‘ Analemma,’ there is no
adequate reason for assuming that their method is derived from any
Greek source. Anslogy and precedence do nob necessarily constitute
originality—there is still the chance of a remoter origin from which
both the systems drew their inspiration. The method of the
¢ Analemma,’ a8 has been already stated, presents a graphical method
for constructing the sun’s altitude and azimuth from the hour-angle
when the Sun’s declination is zero—but such a graphical method
is nowhere to be met with in the Hindu Astronomy; besides
it is generally complex as compared with the elegant Hindu
method. An astronomer who constructs and uses an armillary
sphere to arrive ab his equations in spherical astronomy
and who has not a well-developed spherical astronomy ab his
commsnd must have to draw perpendiculars from the positions of
the heavenly body, not only on the meridian plane, the horizon or
on the prime vertical, as the occasion arises, but also on the line of
intersention of the diurnal circle with the horizon. Hence Braiin-
muhl’s statementt that the Hindu methods of spherical astronomy
have their origin in the ‘Analemma,’ in spite of his admitting that
Indians were first to utilise its methods, is rather far-fetched and
tends to take away the honour from the great Indian astronomers,
who devised the beautiful Hindu methods.} The ‘Analemmsa’
as it now exists is & Latin translation from an Arabic version of

Zeuthen, loc. ¢it., p. 27.
4+ Braunmiihl, ibid. Heath, ibid.
t Heath, ibid, p. 267.

APPENDIX II 185

the original Greek.* We * may reasonably doubt that the Arabic
version was greatly influenced by the Hindu system.

We now pass on to the consideration of other allied or simila¥
problems in the two gystems of astronomy.

Problem V.—To find the angle between the ecliptic and the

meridian.

t Hindu Method:

Let ySA be the ecliptic, yCE the equator, B the east-point of
the orizon. Cut off SH=90°
and draw the gresb circle
HEAP’ cutting the meridian
P'SCH at the points P/ and
H. The aim is to find AP/,
bub it is enough to find EA
gince AP’ is the complement
of EA!,

Both Aryabhata and Brah-
magupta were unable to find
EA correctly. TLet P be the
celestial pole and leb PAE! be
the secondary to the equator
cutting it at E. Both the
above astronomers were content with the idea that AE=AFE/, or that
AE=the declination of the point A of the ecliptic which is 90° ahead
of B in the above figure. This idea continued till the time of
Bhaskara II (1150 A.D.) who found out the correct equation. .

He recognised that CS, the declination of S=PP/; P'EI.:'[ is
then the horizon of the station whose north geographical latitude
is CS. Also, the ‘sine’ of BA is the ‘Agrd’ or the sine of the
amplitude of the point A for the latitude CS.

. _Rsin AL/ xR
R sin BA= "—3705.C8

_ Rsgin ©0°+y8) xR sinw R
TR R cos C8

I e

e

"MOIn the influence of the Hindus on Arsb mathematics and astronomy ; see

i’ i 804.

Alberuni’s India, tr. by Dr. BE. 8achau, Vol. TT, p. ) o

4 Arysbhata, Gola, 45; Brahmasphitasiddhants, 1V, 17; Saryasiddhanta, 1V,
25 ; Bhaskara's Goladhyaya, VIIL, 91-74, first example in his own commentary.

24



1860 KHANDAKHADYAKA

R sin (90° +1) x R'sin
Rcos 8

where ! stands for y8 and & for CS.

Groek Method : )
"We give below the Ptolemy’s method in a slightly modified form.*
Let SHA be the triangle and yCE be the transversal; then we have:

s?n 8C gigf[@ x E.‘f“ Ay_q

sin CH sin EA sin 8

sin 8 sin 90°  sin (‘.?0° +l)=1

cosd sin EA sin !

. gin BEA="5n8xsin (90°+1)
"t cos d x sin I,

which is readily transformed into Bhiiskara’s equation,
The criginality of Bhiaskara would be readily admitted.

Problem VI—To find the angle between the ecliptic and
the horizon,

Hindu Method :
(A) Aryabhata’s method.—It consists of the following steps : —1
(1) Determination of the orient point of ecliptio.
(2) Finding the sine of its amplitude,
(8) Determination of the culminating point of the ecliptic from
the hour-angle of the Sun.
(4) Finding the declination of the culminating point of the ecliptic.

Or R sin EA=

Or

*

Having obtained the above elements his rule can be followed thus :
In this figure NPZH is the
meridian, HMEAN the horizon,
CN’A the ecliptic. If N/ be
the nonagesimal or the highest
point of the ecliptic, the alti-
tude of N’ is the inclination of
the ecliptioc to the horizon,

Let ZN'M be the vertical
through N/, meeting the horizon
as M.

. When the time is given,
the longitudes of A and C can be found out, from which CZ the

* Manitius, ibid, Book I, pp. 104-06,
} Aryabhata, Gola, 83; Saryesiddhanta, V. 5.6,
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zenith distance of C ax.m‘d EA the amplitude of the orient ecliptio
point can be determined.
¢ Here HM =EA.
. According to Ary abhata,
R gin CZx R sin HM

R sin CN/= i

and R sin ZN'= y/ (R sin CZ)%2— (R sin CN/)?
This is only an approximate rule. As expressed here,

R sin CZ xR cos HM
R

_*Rsin CZxR cos HM xR
1 xR cos ON’

_ Rsin CZ x R cos HM
R cos CN/

(B) The method of Brahmagupta:t

Brahmagupta would also first determine the orient ecliptic
point A. Then he subtracts 90° from the longitude of A. Thus
having the longiitude of N/, he next finds the part of the day elapsed
of N'; from which by the time-altitude equation discussed above, he
finds ZN’. This is of course more accurate than that of Aryabhata.
Bhaskara } here follows Brahmagupta.

Greek Method :

Let the ecliptic CN/A cut the lower half of the meridian at
I, Ptolemy takes AK along the ecliptic=90° and AR along the
horizon=90°; then the great circle passing through R and K passes
through the nadir Z'. Now take Z/FK for the triangle and ANR
for the trunsversal, then by Menelaus’ theorem. §

sin FN _ sin Z/R _ sin KA =1
sin NZ/ sin RK sin AT

gin F'N _ cos FZ' _ cos CZ _ sin CH

IR sin ZN'= approximately

accurately

in RK= 8 I'N = =
sin RK= - AP ~ SnAC _ snAC — sm AC
~ 1= 8inCH

Or sin MN sin AC "

* This correction was perhape first hoticed by Rafiganitha (1603 A.D.) in his
commentsry on the Siryasiddhanta.

+ Bralhmasphitasiddhanta, V, 8. .

1 Grahaganita, XII, 3-4, § Manitius, ¢bid, pp. 110-11,
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Here Ptolemy’s equation is simpler than that of Aryabhata;
hence they must be independent of each other.

Problem VII.—To find the angle made by the vertical through
any point of the ecliptic with the latter.

This problem is considered by Ptolemy but it is not considered
separately in Hindu Astronomy, but from the rule for parallax in
longitude, the rule for its caleulation can be deduced.

Hindu Rule:

In the adjoining figure S represents the true position of Sun
and S/ the Sun’s position as
depressed by parallax. N/SA
is the ecliptic. If from 8/,
8'Q be drawn perpendicular
to the ecliptic, then, if P
is the horizontal parallax,

8Q=58'x R_E‘.’;_S’SQ

P xRsin ZB N B@SSLSQ

= R R

*Pp - .
= " v (R sin Z8)% —R(sin ZN)2
= %{Eﬁ’ %« R sin N'S x R cos ZN/,"where N is the nonagesimal.
Thus R cos 8/8Q is seen to be

- R sin N’S x R cos ZN/
‘ R sin Z8 ’

The Hindu method is fully described by Bhiskara in his
'@oladhyayae,’ VIII, 12-25. The truth of the Hindu rule for
R cos 8/8Q is easily seen from the spherical triangle = Z8, where
# is the pole of the ecliptic. ’

# Zryabhata, Gola, 34; Paficasiddhantika, IX, 23; Brahmasphitasiddhanta,
X1, 23. )

t Brahmasphiutasiddhanta, V, 4-5; Saryasiddhants, V, 7-8;Bhﬂsknra; Graha-
ganita, XII, 4.

APPINDIX 1Y

Greek Method: _

* Ptolemy takes SK and SL=90° cach, along the vertical circle
7ZSEK and the ecliptic N'SA. The great circle through K and L
cuts the horizon at R which is the pole of the vertical circle. He -
takes SKL for the triangle and EAR for the transversal, then

sin SB sin KR gin LA _ 1
RIS X Tt X - SL o=
sin EK sin LR sin AS
. _ cos ZS x cos AS
sin LR = 78 % sin AS
or cos §/8Q=cot Z8x cob AS=tan SE cot AS.

or

The Hindu and the Greek rules are altogether different both -
in form and method. There can, therefore, be no questbion of any
connection between them.

1

Problem VIII.—To convert the celestial longitude of a heavenly
body into its polar longitude.

If o be the position of a star, yK and oK are the celestialr
longitude and the celestial lati-
tude respectively; yM and oM
are the polar longitude and
polar latitude; N and oV
are the right ascension and
declination of the star.

Hindu Method: A

All Indian astronomers at-
tempt at finding MK which,
subtracted from, or added to,
yK the celestial longitude, gives yM the polar longitude.

According to Aryabhata,?t

oK xR vers yYKxRsino
ME= 72 7RISR S T

Brahmagupta | makes a distinet improvement on Aryabhabé;

and gives his rule for finding the projection MK on the celesti@l{
equator.

* Manitius, ibid, p. 119.

t Kryabhata, Gola, 36.

t Brahmasphutasiddhanta, X, 17.
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If P be the celestial pole, PKH the “secondary to the equator,
Brahmagupta says that,

NH= oK xR sin (YK +90°) xR sin w
= e

It from o, oR is drawn perpendicular to PKH, it is ovident that,
R sin oR= D80 o-Kst_inyrl(_R.
R
According to Aryabhate and Brahmagupta, as explained before,

R sin ¢KR= Iiﬁ (YK+§Q°) xR sin o )

Hence Brahmagupta intends that,
NH=o¢R= oK x R sin sKR

which is rather a big assumption. He then directs the finding
of the part of the ecliptic of which ¢R or NH is the projection on
the equator thus approximately to MK.

Aryabhata, Brahmagupta* and the modern Saryasiddhanta take
the declination oN=0cK+KH where oK is small. They do not
consider the case where oK is large.

Bhaskara alone gives us fairly correct rules for this transforma-
tion of co-ordinates.

In order to find oN, he would multiply

oK by R co;ﬂ—P ; according to him,

oN= ‘LISX_R..I:Q aKP +KH.}
This is a decided improvement on Brahmagupta’s corresponding
rule. The declination oN obtained would be very nearly accurate.

, Having obtained oN, Bhaskara t then directs tne finding of NH,
thus,

NH= oKxR sin cKP
R cos oN  °

* Brahmasphatasiddhanta, X, 15 ; Sfryasiddhanta, 11, 58,
1 Bhaskars, Grahaganita, XIII, 8.

APPENDIX 11 1

He then directs the finding of MK on the ecliptic of which NH
is the projection by means of the times of rising of the signs of the
zodiac on the equator.

Thus, the Hindu methods show & beginning and development
only. The Greek method as given by Ptolemy is mathematically
accurabe.

*(Ireck Method :

To transform the celestial longitude and celestial latitude to right
ascension and declination,

Let the great circle noK meet the equator at ~. Ptolemy
would then form the given value of yK find y» and AKX by using
his tables for the rising of signs of the zodiac on the equator.
He then takes nPa for the triangle and yNAQ for the transversal.
The Menelaus’ Iiquation, then, is

sin 7Q_, sin PN sinoa _g 4
gsin QP sin N sin &n

Here 7Q=90° + w, QP=90°, PN=90°, cAa=0¢K+EKaA. ma=90°
+ Ko, whence No is obtained.

He next takes PNQ for the triangle and mo for the t-ansversal,

sinPr sin Qs sin Ne
sin 7Q sin AN sin P

Here Pr=w, 1Q=90° + v, QAa=90°—-yA. .

Hence the above equation gives him AN. Now, yN=ya—-aN,

It is almost needless to say that neither in the method nor in
the rules is there any agreement between the Hindu and Greek

spherical astronomy in the solution of this problem,

Mr. Kaye’s view :}

As to Mr. Kaye, it appears that he has not been able to find a
method in the translation of the Siryasiddhanta by Burgess. The
figures of his paper referred to before do not show the ¢ Akga-
ksetras’' even in their projections on the meridian place. He
refers to Braunmiihl’s History of Trigonometry but does not appear
to have been able to follow him in his ‘‘Methode der indischen
Trigoncmetrie.”” Kaye however is not slow in belittling Hindu
trigonometry when he says:—* The Indian astronomers employed

% Ibid, XIII, 4.
+ Manitius, tbid, Vol. II. Achtes Buch, pp. 84-85,
t J.A.8.B., NS, XV,p. 154,
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the sine function principally and the versed sine occasionally; they
never employed the tangent function; and generally, but not always,
preferred to employ the sine of the complementary angle rather than
the cosine functions.”’

It is evident that Kaye never understood the meaning of the
Indian functions of ‘sine’ and ‘cosine.’ These functions are fully
explained by Bhaskara * when he says :—

“ g faeY: MIAYEArg aeEe gt |
' fragiAaTare ag=d ey

In the adjoining figure, of the arc AP,, P M, is the ‘'sine”
and PN, is the “cogine ; "’
of AP,, PyM, is the *‘sine”
and PN, is the ‘‘cosine;’’ of

<
N
:.\i AP,, P,;M; is the ‘'sine’’ and

R
~, b, P,N, is the “‘cosine;’’ ete. It
) \ is evident that & better defini-
w . o . "'M n £ tion of these functions was

never given.

\ N, Kaye’'s motive is clear: his

chief aim is to show the, Greek

connection in everything Indian.
No doubt, he has shown great

ingenuity in this direction.

Instances might be multiplied but the scope of this paper would not

permit this.

- . S

5. Conclusion.

We have now come to the end of the present paper. We have
geen that some of the solutions of Aryabhata are imperfect, of
Brahmagupta the solutions are more accurate, while those of
Bhaskara are generally mathematically correct. The date of the
goientific Hindu Astronomy is indeed 499 A.D., while that of
the Syntaxis is about 150 A.D. It is by these shortcomings
and differences in the methods, new ideas (e.g., the idea of tho

* Bhaskara, Grahaganita, 1T, 88-21, Commentary. The passage may be trans-
lated thus: ' Of that point the distance from the east-west line is the ‘sine’ and
the distance of the point from the north-south line is the *‘cosine.”

differential calculus) * and the like, that we can safely say that
Hindu Astronomy in its .scientific form, although of & later date
than the ‘‘Syntexis’’ of Ptolemy, is original and not borrowed
from foreign source.t There is evidence that some crude form
of Greek astronomy was transmitted to India and went by the
pame of the ‘Romaka’' or the ‘*Pauliéa’’ BSiddhanta, prior
to the time of Aryabhata but our grest Indian astronomers,
Aryabhata with his pupils, Varaha-Mihira and Brahmagupta, had to
construct & new seicnee altogether.

e T

# P. O. Sengupts, History of the Infinitesimal Caleulus in Ancient and
Medieval India in the “J ahresbericht D. Math- Vereinigung "’ Pt blished in Feb., 198L.

+ 'The entire seb of Hindu sstronomical constants is also diﬁe's'rent from that
in the Greek system. Vide the present writer's paper; ' lryabhn.ts (pp. 89, 48),
Journal of the Department of Letters, Vol, XVII, Calcutta University Press.
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- APPENDIX III.
* Hindu Epicyclic Theory

én atbempt is made here to describe the ideas of planetary
motion which the Hindu astronomers had 88 to the motion of
‘““planets "’ ur wandering bodies among the stars. The earliest
system of Hindu astronomy of which we have a definite account
is the Jyotiga Vedanga, dating from about 1400 B.C. In this system
there is nothing of a clear conception of planetary motion. It was a
simple luni-solar system of calendar making for fixing the times for
the performance of Vedio sacrifices. The real scientific Hindu
astronomy dates from the time of Aryabhata I (born 476 AD.), who
must now be regarded as its sole originator.* The foreign systems
of astronomy that had come to India before his time, were
undoubtedly the Romaka and the Paulifa Siddhantas of the Pafca-
sfddhantika,

The Romaka Siddhanta was no doubt the transmitted Greek
astronomy and the Paulifa and perhaps also the Vasistha Siddhanta
as' S}xmmarised in the Pancasiddhantikd were probably of Babylonian
01:1g1n. Ltaadeva, the expounder of the Romaka and the Paulida
Siddhantas, it has now been established, was one of the first batch of
pupils of Aryabhata I. According to Alberuni, the Saryasiddhanta
which is admittedly of Asura (or Babylonian) origin, was composed
by Latadeva.t The Siryasiddhanta as given in Varaha's work was
probably a recast of an older work by Variaha himself, based on the
teachings of Aryabhata. Whether Alberuni be right or wrong,
Latadeva got the appellation of wafagrays, i.c., teacher of all the
systems of siddhantas, It is now definitely known that Aryabhata T
was the teacher of the famous array of Indian astronomers z;is
Niééatku, Latadeva, Pandurangasvami, Bhaskara I and of ,othel.';
of lesser fame.

% P, C: Bez.lguptn. Arysbhatas the Fatherof Indian Epicyclic Astronomy,
COalcutta University Journal of the Department »f Letters, Vol. XVIII.
t Alberupi’s Indis, Vol, I, Ch. X1V, pl Translated by 8achau.

The transmitted Greek astronomy in the shape of the Romaka
Siddhanta had no trace of the epicyelic construction for planetary
motion as we find in Ptolemny's Syntaxis.* A comparison of the
astronomical constants of the Greek and the Hindu systems, points
unmistakably to the conclusion that the Hindu consbtants as deter-
mined by Aryabhata I and his successors, are almost in all cases
different from those of the (reeks. In respect to the elements
therefore the originality of the Hindu astronomers will be admitted
on all hands. As regards the originality of doctrine, materials
uvailable at present makes it impossible for us to ascertain what part
of the doctrine aiso belongs to the Hindu astronomers. In the
present paper we shall rely mainly on Aryabhata I.

Apparent Motions of the Sun and Moon.—Aryabhata says, ‘‘All
planets move in eccentrics to their orbits at the mean rates of angular
motion, in the direction of the signs of the zodiac from their apogees
{or aphelia) and in the opposite directions from their §ighroccas."” .

“‘The eccentric circles of planets are equal to their concentrics, and
the centre of the eccentric is removed from the centre of the earth.”’

‘¢ The distance bebween the centre of the earth and the centre of
bhe eccentric is equal to the radius of the planet’s epicycle; on the
circumference (whether of the epicycle or of the eccentric) the
planet undoubtedly moves with the mean motion.”’t ¢

Here the central idea was that there was no doubt that the
planets moved uniformly in circles round the earth, if the motion

appeared to be variable, it was due to. the fact that the centres of
such circle (i.e., the eccentric circles) did not coincide with the
centre of the earth.

Let B represent the centre of the earth, APM the sun’s circular
orbit or concentric; let A and P be the
apogee and the perigee respectively. From
EA, cut off BC equal to the radius of the R
sun’s epicycle, With centre C and radius P
equal to A describe the . eccentric A’P'S '/,
cutting AP and AP produced at P/ and A’, VA
Here A’ and P’ are the real upogee and
periges of the sun’s orbit. IL.et PM and P/S be any two equal
arcs measured from P and P/,

% P, C. Sengapta, Aryabhata, already referred to. ‘ i
+ Kalakriys, 17-19. Cf. Brihmasphuta-siddhanta, XIV, 10-12; Bhasksra II,

Goladhyaya, V, 7, 10-82.



108 KHANDAKHADYAKA

The idea is that th
i e mean planet M. and th
. e apparent 8
alz:e :Lmultaneous}y from P and P’ in the counterclockwise dir::t?on
g the concentric and the eccentric circles respectively. They

move with the sam . .
M and 8. e angular motion and arrive simultaneously at

Here EM and CB are )
parallel and equal, hence MS is als
' o
and parallel to EC. Leb 8H be drawn perpendioular to EM. ), 6qual

The ;
e anoﬁille‘- P:;‘;M is the mean anomaly and the angle P/ES the
roadily s y; the angle SEM is the equation of the centre, is
i rey ‘ ;en to be + from P/ to A’ and — from A’ to P/ T!;us
gards the character of the equation, the eccentric c;itcle is

quite right. We now ¢ ; o s
amount. urn to examine how far it is true as to the

Let the angl
gle SEM be denoted b
LPIC8=0; EP=CP'=0; EC=MS=p, then e angle / PEM

ban E= SH _ psiné
HE a-pcosé

E= P g p® 3
g fm o+ o5 sin 20+ :—%3 sin 86 +

Now the true value of B in elliptic motion is given by

_ 83\ .
E—<2o—4—> sin 0+% ezsin20+li"—§-38in80*

It we Poge-?’
now put A 2¢ 3 808 first approximation P =g,

Hen .2_2_ =962 ich i
08 5 = 262, which is greater than §o2 by Jeé2. in the case

of th i

co-emziexndx:h:l:z vafiu: of 1:) be correctly taken, the error in the
] cond term becomes +8/; similarly i

of the moon the corresponding error becomes: +8/ 7 I fhe oue

A e D _ .
gain if . 26, what is the centre of the eccentric circle is the

:mit:'hfocus of the ellipse, or that the ancient astronomers practicall
t;o e planets to be.moving with uniform angular motion rou ;'
ho empty focus. This was not a bad approximation ’

*  Godfray’s Astronomy, p. 149,

APPENDIX 111 194
Also B8 =r=EH approximately
r= a(l—l)- cos 6)
a

but in elliptic motion,
=a(l—e¢ cos §).*
Hence the error is not very considerable here also.
This is the way in which the ancient astronomers, both Greek and
Hindu, sought to explain the inequalities in the motion of the sun
and the moon. In the case of the moon, these astronomers took the

3
co-efficient 20—%—=300’ neatly; the modern value of it i8 377

nearly. The reason for this has been pointed oub already in
appendix I, that the moon was observed correctly only at times of
eclipses. At the eclipses or sygygies the evection term of the moon’s
equation diminishes (numerically) the principal elliptic term by
about 76'. o

We have thus far explained the idea of planetary motion of the

ancients under the eccentric circle construction. The same however

is also explained under the epicyclic construction.

Let AMP be the circulafrorbit of the sun, having I the centre of
the earth for the centre. Let the
diameter AEP be the apse line, U
A the apogee and P the perigee. S
Let M be the mean position of the
gun in the orbit. With¢ M as the

N
P A
centre describe the epicycle UNS. e ¢
Let EM cut the epicycle at N and U.
Now the construction for finding ]

the apparent sun is thug given :—
Make < UMS=/MEA, the arc US is measured clockwise

whereas the arc A to M i8 measured counterclockwise.

TFrom this construction MS is parallel to EA, 1f EC be measured
=MS the radius of the epicycle, along A towards the apogee,. then
CS is a constant length and C is & fixed point. Hence the locus of B
iz an equal circle with the centre at C. Thus both the eccentric, and
the epicycle and the concentric combined, led to the same position

and orbit for S.1

e

[
% Godfray's Astronomy, p. 149.
+ Bhaskara 11, Gola, V, 80-32.
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It was thus usual to explain the planetary motion under both the
", aspumed constructions; and both gave the same position for a planct.
The ecoentric circle construction appears to be the earlier in the
history of astronomy and the latter was later. If the former
construction cen be traced to Apollonius of Perga who did so much
to develop the ‘“‘conic sections’” as a science, the reason why he
preferred the eccentric circle to the ellipse, appears to be that either
that this planetary construction was always deep-rooted in the minds
of men or that he was carried by the idea that ‘‘the circle was the
most perfect curve.’”” Wa are inclined to the view that the eccentric
circle idea was transmitted from Babylonia to 'Greece. We now
pass on to consider the Hindu construction for the position of
superior and inferior planets.

Superior Planets.—With regard to the five planets, Mercury,
Venus, Mars, Jupiter and Saturn, the Hindu astronomers give only
one construetion for finding the apparent geocentric position. Each
of these ‘‘star planets” is conceived as having twofold planetary
inequalities : (i) the inequality of apsis, (ii) the ineq .ality of the
fighra. With regard to the superior planets, the §ighra fpogee or
the éighrocoa coincided with the mean position of the sun. As

Varahamihira observes, ‘‘of the other planets beginniag with Mars
the sun is the so-called fighra.*

Let AMSP be the concentric of which the centre E is the same

: a8 that of the earth; A/M,P’
the eccentric cirele of apsis of a
superior planet, of which the
centre is C; A, M, 8, P be
respectively the apogee, the mean
planet, the direction of the
sighra, and the perigee in the
concentric ; A/, My, P’ be the
apogee, the planet as corrected
by the equation of apsis, P’" the
perigee in the eccentric. The arc
‘ AM=arc A'M; ; MM, is parallel
and equal to EC. As used before both the concentric and the
eccentric are of the same radius.

%  Pafncesiddhantika, XVII, 1.

APPENDIX 111 1uw

Here the mean planet M in the concentric is taken to be deflected

to M, due to the true motion in the eccentric circle. Join EM,

cutting the concentric 8t M,. Now let ES be joined and let & be

taken along ES, such that
Eg/ §ighra periphery of the ; planet in degrees
B 80

Qun’s mean distance from the earth*

= : ;
~ Planet’s mean distance from the sun or the earth

ES' thus determined is called the radius of the §ighra epicycle of the

superior planet. |

With S as the centre and radius equal to ES o.r EA, descrlbg
another circle which is called the §ighra eccentric cutting ES ‘producef
at §”. Now measure the arc §/M; in the ecc'enbrlc-:.SMg'm
the concentric. The apparent superior planet is s';een in the. dlrgtlgn
EM, from the earth. This is the corfstructu?n used in mtu
astronomy for calculating the geocentric longitude of any star

planet. '
" 1t is evident in the case of & superior planet that the ‘eccentrxg
having &' for the centre and whose radius.== EA=R the stan(;la;,
radius for any circular orbit, is the mean orbit of tl.le planet an f
the mean position of the sun. In other words in the ca.se o 13
guperior planet the $ighra eccentric represents the mean orbit roun1
the sun. If the parallelogram CES/CY be constructed, then m.) equa:
circle described with C' as the centre is the apparenb eccentric orbib

of the superior planet.

In the actual method of calculating the geocentric longitude of. a
‘star planet,’ therc are four operations given, the first t.wo of which
have the effect of changing the are MA or rather the point At The
last two operations relate to the two displacements MMy and M,M 3
We have here followed solely the construction by the eccentric
circles; the same geocentric position of & superior planet coulfl .be
equally well obtained by the epicyclic constructi?n. 'In describing
the construction for finding the position of an inferior planet we
shall follow the epicyelic construction only.

T - - -
% P. (. Bengupta, Translation of the Aryabhatiya, Kalakriyd, pp. 86-38,
Journal of the Department of T.etters, Vol. XVIL.

}+ Translation proper, pp. £8-60.
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‘Infarior Planets.—Let E be the centro of the earth, AMS the
v orbit of & mean inferior planet or
the mean sun. EA the direction of
the' apogee of apsis and ES that of
the sighra. The inequality of the
apsis takes the mean geocentric
planet from M to M, such that
MM, is parallel to EA. TLet EM
be joined cutting the concentric at:
i\;[lg; M, is taken as the centre of
circult?,r orbit in which the apparentE;)l:fz;mmoiz:yc]e o the e
- With M, as the centre and the radius of the inferior planets’ dighr
ePl.cycle 88 radius, - describe the circle NVU which is here t.hs éfghm
epioycle or the real circular orbit. In it draw the radius M V(a ol
to ES; then VP is the geocentric position &1 the inferior l“;nellzam"el
. Ii[ere the first displacement MM, is due to the inequall)ib f i
Fnd. is for ﬁn.ding the position of My the centre of the reai, Zir:ll:lsm
Z:E;:.of"s:;; (:;lle:h:v:s ttmt the apparent planet moved in a oirculzz
h ¢ .en r.e was very near the mean position of the
the first operation in this construction w sl'm'
the centre of this so-called circular orbit :: aflailz?::;:rd f;neietermlne
The fighra of an inferior planet moves round thep eartl; t th
1&:@1:6 ::;ealx? ra];es in which the inferior planet moves .round thiz SLtme'
e line in this figure is alwa i - oining
t.he s'un to the mean heliocegntric inferioz'sprl)::lz]:ela;(:i ti:lleo ot
tion it is parallel to M,V.* , b ot
Such in brief is an outline of the Hindu idea of planetar i
as taught by Aryabhata I, Brahmagupta and Bhaskara II aZd n;‘ljltwn
In order to avoid complexity we have omitted the detail (I) .
paper Aryabhata we have indicated how the twofold iZ. nl'o'ur
were se[.)arated in case of a superior planet by the ancients fequm e
case of 1r.1ferior planets, the method perha'ps was that of ‘ﬁnd'n tll:e
?f::::;?ﬁ:hen f‘:d where their eastern and western e]onlgiiion);
an position of the sun wer
methods of the ancients and that thereeizqriloa]éoilzesfhv:;er:h > .’e“l
astronomers followed the same methods in findin tha ® o o
the orbits anew. g the clements of

# P. 0. Sengupta, Trapslation
, of the Aryabhatiya, Kalakriya 3
4 P.C. Sengupta, Aryabhata, pp- 45-52, ' e X7, v 9555

/
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Gara, 80, Sigh;a epicycle ..picycle of conjunct.on)

Kaulava, 80.
Kidgstughna, 80,
Naga, 80.
Sokuns, 80.
~ Taitila, 80.
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€
Vigts, 80.
Kendra, 20,
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Kujya, 683, 64, 77,
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Lalla,
correction to the longitude of moon's
node, 95.
correction to mean Jupiter, 125.
Latka, 8, 17, 40.
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its ‘cosine,’ 72,
Length of the night and of the day, 28, 65.
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Lorad of the year, 87.
Lunar Eclipse,
cslculation of, 81-90.

Mahadeva, 1
Mahayuge, §, 5, 7, 8, 11, 18-15.
Manda, 141,
Mafijula, 80.
Mars,
caloulation of apparent geocentrio longi-
tude of, 49.

Heliacal rising of, &, 53,
retrograde motion of, 51,
revolutions in a Mahayuga of, 89.
Sighro equations of, 49,

of, 50,
Btationary point of, 51,
Mercury,
Brahmagupta's correction to fighra equa-
tion of, 144,
Heliacal rising of, 53.
revolutions in a Mahdyuga of, 41.
Sighra of, 41.
Sighra equations of, 69,
Stationary point of, 53.
Moon, §
agra of, 129, 180,
apparent motion of, 24.
apoges of, 14, 188, 140,
Brahmagupta's correction to the motion
of, 140,
revolutions in a mahdyuga of, 14.
longitude of (new rule), 143.
Celestial latitude of, 82.
Equations of, 20, 148.
Brahmagupta's correction to the equa-
tion of, 148,
Inclination of the line of the cusps of,
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Mean angular diameter of, 82, 83.
Mean position of, 10, 11.
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Tabular difference of equations of, 141.

Nakgatra, 25, 28.
description of, 150, 151.
identification with star groups, 160, 151,
numbers of stars in, 148, 150, 151,
Newcomb,
mean length of tropical year, 79.

Ocoultation of stars by planets, 152, .
Orient ecliptic point, 68, 69.

Pata (equality of declinatious), 81, 91.
Calculation of, 84-87.
Pauliéa school of astronomers, 17.
Parallax,
corraction for, at instants of conjunction,
beginning and end of a solsr eclipse, 106.
in longitude and latitude, 98-100, 104,

INDEX

Planets,
allowance for parallax in cbnjunction
of, 135.
celestial latitude of, 185.
conjunction of, 134-187.
rules for conjunction, 134, 136.
angular distance between them when of
equal celestial latitude, 135.
equations of apsis of, 48.
mean motions of, 18, 19.
*Polar’ longitude and latitude, 120.
Precession of Equinoxes, 79, 80.
total precession observed by Bhaskara IT, 80.
by Prthidaka, 80.
Projection of the line of the moon’s cusps,
131, 132.
Pulida, 17.

Rohitaka (Rohtak), 17.
Romaka-Siddhanto, 6

Saka, era or year, 1, 2,6, 7,12,
Sanku, 13, 18, 76.
Sadkutala, T8.
Saturn,
Brahmagupta's correction to the equation
of apsis of, 144,
heliacal rising of, 58.
revolutions in & Mahdyuga of, 46.
Sighra equation of, 57.
stationary point of, 58.
Saura day, 8
Siddhantas, 1, 81, 81.
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to, 129.
Sighra, 115, 125.
anomaly, 43, 51, 52.
hypotenuse, 118, 116.
karna, 117.
of Mercury, 41.
of Venus, 136.
8ighrocea, 9, 116,
of plauets, 9.
Signs of the zodiac,
duration of rising in Caloutta, 96.
on the equator, 65.
at any latitude, 68.
st Kurukgetrs, 65,

‘Bine," 33, 70.

Table of ‘sines,” mode of its use, 83,
‘Sine,’ rule in plane triangle, 115,
Sitasita, 132.

Solar eclipse,

calculation of, 94-112.

phiase at any time, 112, 113.
Sripati, 93.

Srigena, 139.

‘Star planets,’ 58.
apparent daily motions of, 60, 81. -
Brahmagupta's correction to apog b4

of, 144. :

celestial latitudes of, 116-119.
distance from the earth of, 184.
lougltudes of the nodes of, 116, 134.

Bun,
apparent da.lly motion of 23, 24,

of, 143. .
Declinations for each § sign, 71.
Equations of, 19.
mean angular diameter of, 82. i
passage from a sign of the zodiao |
next, 37.
Tabular difference of equations of, 14
Siryadeva Jajvan, 80. ;

Tantras, 1. ®
Time elapsed of, or remaining of the day
Tithi, 2, 8, 5.7, 9, 10, 26. e
calenlation of a, 29,
Tripraénadhikara, 25, 81.

Ujjayini (Ojein), 17, 18, 94, 95, 120.
Uttarakhandakhadyaka, 187-153.

Vaidhrts, 80, 81, 84.

Valana, 92, 93,

Venus,
heliacal rising of, 57, 119, 120,
revolutions in a Mahayuga of, 44, ;
fighra of, 44, 136,
fighra equation of, 56, 56.
stationary point of, 56



204

Vie'zmoaridzra, 80, 189.
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. calculation of a, 84-87.

Yogatards, 148,
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Yogatdrias—contd.
charadter of, 148.
Polar longjtudes of, 149.
correction to, 149-160.

Identification of by Burgess, 150-15L.

Yojanas, 18,
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